STATE ELIGIBILITY TEST
COMPUTER SCIENCE AND APPLICATIONS
(SYLLABUS)

SUBJECT CODE : 28

PAPER-II

1. **Discrete Structures**

 Computability: Models of computation-Finite Automata, Pushdown Automata, Non-determinism and NFA, DPDA and PDAs and Languages accepted by these structures. Grammars, Languages, Non-computability and Examples of non-computable problems.

 Graph: Definition, walks, paths trails, connected graphs, regular and bipartite graphs, cycles and circuits. Tree and rooted tree. Spanning trees. Eccentricity of a vertex radius and diameter of a graph, Planar graphs.

 Groups : Finite fields and Error correcting/detecting codes.

2. **Computer Arithmetic**
 Propositional (Boolean) Logic, Predicate Logic, Well-formed-formulae (WFF), Satisfiability and Tautology.

 Representation of Integers : Octal, Hex, Decimal, and Binary. 2’s complement and 1’s complement arithmetic. Floating point representation.

3. **Programming in C and C++**
 Programming in C : Elements of C-Tokens, identifiers, data types in C. Control structures in C. Sequence, selection and iterations(s). Structured data types in C-arrays, struct, union, string, and pointers.

4. **Relational Database Design and SQL**
 E-R diagrams and their transformation to relational design, normalization- 1NF, 2NF, 3NF, BCNF and 4NF. Limitations of 4NF and BCNF.
5. **Data and File structures**

Data, information, Definition of data structure. Arrays, stacks, queues, linked lists, trees, graphs, priority queues and heaps.

6. **Computer Networks**

Network fundamentals: Local Area Networks (LAN), Metropolitan Area Networks (MAN), Wide Area Networks (WAN), Wireless Networks, Inter Networks.

Reference Models: The OSI model, TCP/IP model.

Internetworking: Switch/HUB, Bridge, Router, Gateways, Concatenated virtual circuits. Tunneling, Fragmentation, Firewalls.

7. **System Software and Compilers**

Loading, linking, relocation, program relocatability. Linkage editing.

Text editors. Programming Environments. Debuggers and program generators.

Compilation and Interpretation. Bootstrap compilers. Phases of compilation process. Lexical analysis. Lex package on Unix system.

Context free grammars. Parsing and parse trees. Representation of parse (derivation) trees as rightmost and leftmost derivations. Bottom up parsers-shift-reduce, operator precedence, and LR. YACC package on Unix system.

8. **Operating Systems (with Case Study of Unix)**
 Main functions of operating systems. Multiprogramming, multiprocessing, and multitasking.

 Memory Management: Virtual memory, paging, fragmentation.

 Concurrent Processing: Mutual exclusion. Critical regions, lock and unlock.

UNIX

The Unix System: File system, process management, bourne shell, shell variable, command line programming.

Filters and Commands: Pr, head, tail, cut, paste, sort, uniq, tr, join, etc., grep, egrep, fgrep, etc., sed, awk, etc.

System Calls (like): Create, open, close, read, write, isseek, link, unlink, stat, fstat, umask, chmod, exec, fork, wait, system.

9. **Software Engineering**

 Software Metrics: Software Project Management.

 Software Design: System design, detailed design, function oriented design, object oriented design, user interface design. Design level metrics.

10. **Current Trends and Technologies**
 The topics of current interest in Computer Science and Computer Applications shall be covered. The experts shall use their judgement from time to include the topics of popular interest, which are expected to be known for an application development software professional, currently, they include:

Parallel Computing
 Parallel virtual machine (pvm) and message passing interface (mpi) libraries and calls. Advanced architectures. Today’s fastest computers.

Mobile Computing
 Mobile connectivity-Cells, Framework, wireless deliver technology and switching methods, mobile information access devices, mobile date internetworking standards, cellular data communication protocols, mobile computing applications. Mobile databases-protocols, scope, tools and technology. M-business.
E-Technologies

Electronic Payment Systems: Digital Token, Smart Cards, Credit Cards, Risks in electronic Payment System, Designing Electronic Payment Systems.

Electronic Data Interchange (EDI): Concepts, Application, (Legal, Security and Privacy) issues, EDI and Electronic Commerce, Standardization and EDI, EDI Software Implementation, EDI Envelope for Message Transport, Internet-Based EDI.

Software Agents: Characteristics and Properties of Agents, Technology behind Software Agents (Applets, Browsers and Software Agents)

Main concepts in Geographical Information System (GIS), E-Cash, E-Business, ERP packages.

Data Warehousing: Data Warehouse environment, architecture of a data warehouse methodology, analysis, design, construction and administration.

Data Mining: Extracting models and patterns from large databases, data mining techniques, classification, regression, clustering, summarization, dependency modelling, link analysis, sequencing analysis, mining scientific and business data.

Windows programming
Introduction to Windows programming-Win32, Microsoft Foundation Classes (MFC), Documents and views, Resources, Message handling in windows.

Simple Applications (in windows)
Scrolling, splitting views, docking toolbars, status bars, common dialogs.

Advanced Windows Programming
Multiple Documents Interface (MDI), Multithreading, Object linking and Embedding (OLE). Active X controls, Active Template Library (ATL). Network programming.
PAPER-III(A)

Unit-I
Combinational Circuit Design, Sequential Circuit Design, Hardwired and Microporgrammed processor design, Instruction formats, Addressing modes, Memory types and organisation, Interfacing peripheral devices, Interrupts.

Microprocessor architecture, Instruction set and Programming (8085, P-III/P-IV), Microprocessor applications.

Unit-II
Database Concepts, ER diagrams, Data Models, Design of Relational Database, Normalisation, SQL and QBE, Query Processing and Optimisation, Centralised and Distributed Database, Security, Concurrency and Recovery in Centralised and Distributed Database Systems, Object Oriented Database Management Systems (Concepts, Composite objects, Integration with RDBMS applications), ORACLE.

Unit-III
Display systems, Input devices, 2D Geometry, Graphic operations, 3D Graphics, Animation, Graphicstandard, Applications.

Unit-IV
Programming language concepts, paradigms and models.

Principles, classes, inheritance, class hierarchies, polymorphism, dynamic binding, reference semantics and their implementation.

Principles, functions, lists, types and polymorphisms, higher order functions, lazy evaluation, equations and pattern matching.

Principles, horn clauses and their execution, logical variable, relations, data structures, controlling the search order, program development in prolog, implementation of prolog, example programs in prolog.

Principles of parallelism, coroutines, communication and execution. Parallel Virtual Machine (PVM) and Message Passing Interface (MPI) routines and calls. Parallel programs in PVM paradigm as well as MPI paradigm for simple problems like matrix multiplication.

Preconditions, post-conditions, axiomatic approach for semantics, correctness, denotational semantics.

Compiler structure, compiler construction tools, compilation phases.

Finite Automata, Pushdown Automata. Non-determinism and NFA, DPDA, and PDAs and languages accepted by these structures. Grammars, Languages-types of grammars-type 0, type 1, type 2, and type 3. The relationship between types of grammars, and finite machines. Pushdown
automata and Context Free Grammars. Lexical Analysis-regular expressions and regular languages. LEX package on Unix. Conversion of NFA to DFA. Minimizing the number of states in a DFA. Compilation and Interpretation. Bootstrap compilers.

Unit V

Unit VI

Unit VII

Object, messages, classed, encapsulation, inheritance, polymorphism, aggregation, abstract classes, generalization as extension and restriction. Object oriented design, Multiple inheritance, metadata.

HTML, DHTML, XML, Scripting, Java, Servelets, Applets.

Unit VIII

Software development models, Requirement analysis and specifications, Software design, Programming techniques and tools, Software validation and quality assurance techniques, Software maintenance and advanced concepts, Software management.

Unit IX

Introduction, Memory management, Support for concurrent process, Scheduling, System deadlock, Multiprogramming system, I/O management, Distributed operating systems, Study of Unix and Windows NT.
Unit-X

Definition, AI approach for solving problems.

Automated Reasoning with propositional logic and predicate logic-fundamental proof procedure, refutation, resolution, refinements to resolution (ordering/pruning/restriction strategies).

State space representation of problems, bounding functions, breadth first, depth first, A, A*, AO*, etc. Performance comparison of various search techniques.

Frames, scripts, semantic nets, production systems, procedural representations. Prolog programming.

Components of an expert system, Knowledge representation and Acquisition techniques, Building expert system and Shell.

RTNs, ATNs, Parsing of Ambiguous CFCs. Tree Adjoining Grammars (TAGs).

Systems approach to planning, Designing, Development, Implementation and Evaluation of MIS.

Decision-making processes, evaluation of DSS, Group decision support system and case studies, Adaptive design approach to DSS development, Cognitive style in DSS, Integrating expert and Decision support systems.

PAPER-III(B)

(ELECTIVE/OPTIONAL)

Elective-I

Theory of Computation: Formal language, Need for formal computational models, Non-computational problems, diagonal argument and Russell's paradox.

Deterministic Finite Automation (DFA), Non-deterministic Finite Automaton (NFA), Regular languages and regular sets, Equivalence of DFA and NFA. Minimizing the number of states of a DFA. Non-regular languages, and Pumping lemma.

Pushdown Automaton (DFA), Deterministic Pushdown Automaton (DPDA), Non-equivalence of PDA and DPDA.

Context free Grammars: Greibach Normal Form (GNF) and Chomsky Normal Form (CNF), Ambiguity, Parse Tree Representation of Derivations. Equivalence of PDA’s and CFG’s. Parsing techniques for parsing of general CFG’s-Early’s, Cook-Kassami-Younger (CKY), and Tomita’s parsing.

Linear Bounded Automata (LBA): Power of LBA. Closure properties.

Chomsky Hierarchy of Languages: Recursive and recursively-enumerable languages.

Elective-II

Variable Length codes: Prefix Codes, Huffman Codes, Lempel-Ziev(LZ) Codes. Optimality of these codes. Information content of these codes.

Error Correcting and Detecting codes: Finite fields, Hamming distance, Bounds of codes, Linear (Parity Check) codes, Parity Check matrix, Generator matrix, Decoding of linear codes, Hamming codes.

Data Compression Techniques: Representation and compression of text, sound, picture, and video files (based on the JPEG and MPEG standards).

Elective-III

Complexity of simplex algorithm(s). Exponential behaviour of simplex.

Ellipsoid method and Karmarkar’s method for solving LPPs. Solving simple LPPs through these methods. Comparison of complexity of these methods.

Assignment and Transportation Problems: simple algorithms like Hungarian method, etc.

Elective-IV

Neural Networks: Perceptron model, Linear separability and XOR problem. Two and three layered neural nets, Backpropagation-convergence, Hopfield nets, Neural net learning, Applications.

Elective-V

Unix : Operating System, Structure of Unix Operating system, Unix commands, Interfacing with Unix, Editors and Compilers for Unix, LEX and YACC, File system, System calls, Filters, Shell programming.

Windows: Windows environment, Unicode, Documents and Views, Drawing in a window, Message handling, Scrolling and Splitting views, Docking toolbars and Status bars. Common dialogs and Controls, MDI, Multithreading, OLE. Active X controls, ATL, Database access, Network programming.