DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO 171622 Booklet Sr. No. TBC: 17/18/SET Roll No. COMPUTER SCIENCE AND APPLICATIONS PAPER II [Maximum Marks: 200 Time Allowed: 2 Hours Instruction for the Candidates Write your Roll Number in the space provided on the top of this page. Do not write anything else 1. on the Test Booklet except in the space provided for rough work. This paper consists of one hundred (100) multiple-choice type of questions. All questions carry 2. equal marks. At the commencement of the examination, the question booklet will be given to you. In the first 5 3. minutes, you are requested to open the booklet and compulsorily examine it as below: To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet. Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be given. Each item has four alternatives response marked (A), (B), (C) and (D). You have to darken the 4. circle as indicated below for the correct response against each item completely with Blue/Black ball point pen as shown below. H.B. Pencil should not be used in blackening the circle to indicate responses on the answer sheet. (C) (D) Where (B) is correct response. Example: Your responses to the each item are to be indicated in the OMR Sheet provided to you only. If you 5. mark your response at any place other than in the circle in the OMR Sheet, it will not be evaluated. Read instructions given inside carefully. 6. Rough work is to be done in the end of this booklet. 7. If you write your Name, Roll Number, Phone Number or put any mark on any part of 8. the OMR Sheet, except for the space allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair means, such as change of response by scratching or using white fluid, you will render yourself liable to disqualification. You have to return the original OMR Sheet to the invigilators at the end of the examination 9. compulsorily and must not carry it with you outside the Examination Hall. You are however, allowed to carry original question booklet and duplicate copy of OMR Sheet on conclusion of examination. Use of any calculator or log table etc., is prohibited. 10. There are no negative marks for incorrect answers. 11. CARRYING AND USE OF ELECTRONICS/COMMUNICATION DEVICES IN 12. EXAMINATION HALL IS NOT ALLOWED. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

COMPUTER SCIENCE AND APPLICATIONS

Paper II

Time Allowed: 2 Hours] [Maximum Marks: 200

Note:— This question paper contains One hundred (100) multiple choice questions.

Each question carries two (2) marks. Attempt all questions.

- 1. P and Q are two propositions. Which of the following logical expressions are equivalent?
 - (I) $P \vee \sim Q$
 - (II) $\sim (\sim P \wedge Q)$
 - (III) $(P \land Q) \lor (P \land \sim Q) \lor (\sim P \land \sim Q)$
 - (IV) $(P \wedge Q) \vee (P \wedge \sim Q) \vee (\sim P \wedge Q)$
 - (A) Only (I) and (II)

- (B) Only (I), (II) and (III)
- (C) Only (I), (II) and (IV)
- (D) (I), (III) and (IV)
- 2. Let N denotes the set of all natural numbers and R be the relation on $N \times N$ defined by $(a, b) R (c, d) \Leftrightarrow a + d = b + c, \forall (a, b), (c, d) \in N \times N$. Then R is:
 - (A) Reflexive but not symmetric
- (B) Not reflexive but symmetric
- (C) Symmetric but not transitive
- (D) Equivalence relation
- 3. Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is :
 - (A) 11

(B) 12

(C) 13

(D) 14

T.B.C.: 17/18/SET—II

There are 3 coins in a box. One is a two-headed coin, another is a tair coin and third is a biased coin that comes up heads 75 percent of the time. When one of the three coins is selected at random and flipped, it shows heads. What is the probability that it was the two-headed coin?

(A)	$\frac{1}{9}$		(B)	$\frac{2}{9}$
(C)	49	w (8)	(D)	$\frac{5}{9}$

5. Let $G = \{1, -1, i, -i\}$ be a group w.r.t. multiplication. The order of i is : (where $i = \sqrt{-1}$)

- (A) 2 (B) 3 (C) 4 (D) 5
- 6. Let G be a finite group on 10 elements. Let H be a subgroup of G and H ≠ G. The size of a largest possible subgroup H of G is:
 - (A) 4 (B) 5 (C) 7 (D) 9
- 7. If G is a graph with e edges and n vertices, the sum of the degree of all vertices in G is:
- vertices in G is :

 (A) e

 (B) e/2
 - (C) 2e (D) 2/e
- 8. A connected planar simple graph has 20 vertices, each of degree 3. Into how many regions does a representation of this planar graph split the plane?
 - (A) 12 (B) 30
 - (C) 60 (D) 20

9.	In a	critical	l path	analysis	, CP	M is	:					
	(A)	Event	oriente	d			(B)	Probabilistic in nature				
	(C)	Detern	ninistic	in natu	ire		(D)	Dynamic in nature				
10.	Cons	sider th	e follov	ving Lir	near	Progr	ramm	ing Problem (LPP):				
			I	Max. Z	$=2x_1$	L + 4	x_2					
				S.t. x	1 + 2	$2x_2 \leq$	5 5					
3				í	x ₁ +	<i>x</i> ₂ ≤	4					
					x_1 ,	$x_2 \ge$	0					
	The	above	LPP ha	as a/an	:							
	(A)	Unique	e soluti	on			(B)	Infinite solution				
	(C)	Unbou	nded s	olution			(D)	Infeasible solution				
11.	Mat	ch the	followin	ng:								
	8	List	t-I					List-II				
	(a)	2421 (Code				(i)	Cache memory				
	(b)	Contro	l memo	ory			(ii)	Storage unit				
	(c)	Regist	er				(iii)	Self complementing				
	(d)	Associa	ative m	apping			(iv)	Micro-programmed control unit				
	Cod	es:										
		(a)	(b)	(c)	(d)			*				
	(A)	(i)	(ii)	(iii)	(iv)							
	(B)	(iii)	(iv)	(ii)	(i)	9						
	(C)	(iv)	(iii)	(ii)	(i)							
	(D)	(iv)	(iii)	(i)	(ii)							

12.	Eva	luate th	ne follov	wing pos	stfix exp	ores	ssion	ABCDE \times /- +, if A = 10, B = 12,
	C =	70, D	= 5 an	d E = '	7:			
	(A)	31					(B)	30
	(C)	20					(D)	21
13.	Mat	ch addı	essing	mode to	the lo	cati	ion o	f the operand:
		L	ist-I					List-II
		Addre	essing	mode				Location of operand
	(a)	Implie	d				(i)	Registers in CPU
***	(<i>b</i>)	Immed	liate	El .			(ii)	Register specifies the address of
								the operand
	(c)	Regist	er				(iii)	Operand is part of instruction
	(d)	Regist	er Indi	rect			(iv)	Specified implicitly in the definition
						21		of instruction
	Cod	es:						
	4	(a)	(b)	(c)	(d)	,		8
	(A)	(i)	(ii)	(iii)	(iv)			
	(B)	(iv)	(iii)	(ii)	(<i>i</i>)			N
×	(C)	(iii)	(iv)	(ii)	(i)			
	(D)	(iv)	(iii)	(<i>i</i>)	(ii)	¥8		
T.B.	C. : 17	7/18/SE				5	*	P.T.O.

14.	Whic	ch of the following statements are true?
	(<i>i</i>)	Programmed I/O is more efficient than interrupt initiated I/O in terms
		of CPU utilization.
	(ii)	Interrupt initiated I/O is more efficient than programmed I/O in terms
		of CPU utilization.
	(iii)	DMA transfer is based on the checking of input and output flags by the CPU.
	(iv)	DMA transfer is used to perform data transfer between memory and
,		I/O directly.
-	(A)	(i) and (iii) only (B) (i) and (iv) only
1	(C)	(ii) and (iii) only (D) (ii) and (iv) only
15.	Wha	t is the radix (base) of the numbers, if the solution of quadratic
	equa	tion $x^2 - 10x + 36 = 0$ is $x = 8$ and $x = 6$?
	(A)	15 (B) 14
	(C)	13 (D) 12
16.	Whi	ch of the following is (are) CISC characteristic(s) in Computer
	Arch	itecture ?
	(<i>i</i>)	Variable length instruction formats
	(ii)	A large variety of addressing modes
	(iii)	Single cycle instruction execution
	(A)	(i) and (ii) only (B) (i) only
	(C)	(iii) only (D) (i), (ii) and (iii)
T.B.C.	: 17	7/18/SET—II 6

17.	A co	omputer uses a memory unit	with 256	K words of 32 bits each. A binary
	inst	ruction code is stored in one	word of	memory. The instruction has four
	par	ts : an indirect bit, an opera	ation co	de, a register part to specify one
	of 6	4 registers and an address p	art. How	many bits are there in operation
	code	?		
	(A)	7	(B)	8
	(C)	10	(D)	12
18.	Con	sider the following two level	impleme	entations:
	(i)	AND-OR		
	(ii)	NAND-NAND		
	(iii)	NOR-NOR		9 · · · · · · · · · · · · · · · · · · ·
	The	sum of products form of Boo	lean fun	ction can be implemented using:
	(A)	(i) and (ii) only	(B)	(ii) and (iii) only
	(C)	(i) and (iii) only	(D)	(i), (ii) and (iii)
19.	The	time delay of the four segment	ts in the	pipeline are as follows : $t_1 = 50$ ns,
	$t_2 =$	30 ns, $t_3 = 95$ ns and $t_4 = 4$	45 ns. T	he interface delay time $t_r = 5$ ns.
	How	long will it take to complet	e 100 ta	isks in the pipeline?
	(A)	10200 ns	(B)	10300 ns
	(C)	10400 ns	(D)	10500 ns
T.B.C	. : 17	7/18/SET—II	7	P.T.O.

20. A two-way set associative cache memory uses block of four words. The cache can accomodate a total of 2048 words from main memory. The main memory size is 128 K × 32. How many bits are there in the Tag, set and word field of Address format?

	Tag	Set	Word
(A)	7	8	2
(B)	8	7	2
(C)	9	6	2
(D)	10	5	2

- 21. In regard to XML DTD and XML scheme, which is not correct?
 - (A) Both are used to validate XML documents
 - (B) Both work on well formed XML documents
 - (C) Both are themselves XML complaint
 - (D) Both are based on the tree data model
- 22. Which of the following shows the *correct* hierarchy of arithmetic operations in C?
 - (A) / + * -

(B) * - / +

(C) + - / *

- (D) */+-
- 23. Which of the following points lies on the other side of the origin with reference to the line 4x + 3y = 12?
 - (A) (2, 1)

(B) (1, 3/2)

(C) (3, 1)

- (D) (1, 1)
- 24. The executable statement x = 8 + 2% 8 evaluates to:
 - (A) 2

(B) 10

(C) 8

(D) 0

25.		ich storage class should be preferred for the variables that are used by lost all functions in a program ?
	(A)	
	(C)	Auto (D) Register
26.	Jav	ascript can be coded in HTML:
		In the

29.	Whe	n HTTI	P calls	for a se	rvlet	that	is no	t yet loaded, the steps followed in
	sequ	ience ar	'e :					
	(A)	Load,	create,	initializ	e and	l serv	vice	
	(B)	Service	only					
	(C)	Initiali	ze and	service				
	(D)	Create	, initial	ize and	servi	ice		
30.	Mate	ch the f	followin	g lists :				
		List	-I					List-II
	(a)	Applet					(i)	Server side, heavyweight
	(b)	Javasc	ript				(ii)	Client side, uncompiled java code
	(c)	Servlet	;				(iii)	Client side, compiled java code
٠	(d)	CGI					(iv)	Server side, lightweight
	Cod	es:						
		(a)	(<i>b</i>)	(c)	(d)			
	(A)	(iii)	(ii)	(i)	(iv)			
	(B)	(iii)	(i)	(ii)	(iv)			
	(C)	(ii)	(iii)	(iv)	(i)			
	(D)	(iii)	(ii)	(iv)	(i)			
31.	Whic	ch of th	e follow	ving is	true a	about	the	Impedance Mismatch problem ?
	(A)			by OOD	Bs by	stor	ing p	persistent objects beyond program
		executi	on.		,			
	(B)					15		f the programming language are as of DBMS.
	(C)	Both (A						
		Neither						
mp c				· (• •)		1.0		
T.B.C.	: 17	/18/SET	—II			10		

- 32. Which of the following is NOT true about NOSQL?
 - (A) It is a class of non-relational data storage system
 - (B) Relaxes the ACID properties
 - (C) It requires a fixed Table Schema
 - (D) May be of the type key/value or schema-less
- 33. Consider the following statements:
 - (i) Candidate key is any minimal set of attributes that functionally determine all attributes.
 - (ii) Primary key is used to uniquely identify each tuple in a relation.
 - (iii) Primary key may be composite.

Which of the following is true?

(A) Only (ii) and (iii)

(B) Only (i) and (ii)

(C) Only (ii)

- (D) (i), (ii) and (iii)
- 34. Which of the following is True?
 - (A) Given a populated relation, we can determine the functional dependencies of the relation.
 - (B) The higher the Normal Form of the relation, the more efficient it is.
 - (C) If an attribute is removed from a superkey, it will cause the superkey to cease to be a superkey.
 - (D) An attribute that is not the member of any candidate is the non-prime attribute.
- 35. Functional Dependency $X \to A$ holds in a relation schema R, where X is not a superkey and A is a prime attribute. Which is *true*?
 - (A) R will be in 3 NF but not in BCNF
 - (B) R will be in 3 NF as well as in BCNF
 - (C) R is in 4 NF
 - (D) R will be in 2 NF but not in 3 NF

- 36. Which is false about Native XML Databases?
 - (A) They are based on the hierarchical tree model
 - (B) They work on specialized indexing and querying techniques
 - (C) They include data compression techniques to reduce the size of the documents for storage
 - (D) They store XML documents in text fields
- 37. Let Relation R be

AI	AII	AIII
1	2	3
4	5	6
7	8	9

and Relation S be

The θ -join of relation R and S, given by R \bowtie S is the following :

(A)	AI	AII	AIII	AIV	AV	(B)	AI	AII	AIII	AIV	AV
	1	2	3	3	1		1	2	3	3	. 1
	1	2	3	6	2		1	2	3	6	2
	4	5	6	6	2						

38.	SEI	LECT b	ranch_	name, r	nax (lo	oan_a	moui	nt) FROM loan_details :					
	(A)		ys the num lo		name	and l	oan a	amount of the branch that too	k the				
	(B)			name o			hes tl	hat took the maximum loan.	Does				
	(C)	Displa	ys an	error									
	(D)	Displa	ys all	tuples f	rom tl	ne ta	ble lo	oan_details					
39.	SEI	ECT b	ranch_1	name F	ROM	loan_	detai	ils WHERE loan_amount =					
(SELECT min (loan_amount)													
	FROM loan-details)												
	(A)	Invalid	d Quer	у									
	(B)							the branch(es) with minimum num loan amount	loan				
	(C)		ys brai loan ai		ne and	l loar	n_am	ount of the branch(es) with	mini-				
	(D)		Displays minimum loan_amount only of the branch(es) with minimum loan amount. Does not display the branch_name										
40.	Mat			ng lists									
		Lis	t-I					List-II					
	(a)	Associ	ation F	Rule Mi	ning		(<i>i</i>)	Predicts class labels					
	(b)	Classif	fication				(ii)	Frequent patterns					
	(c)	Cluste	ring				(iii)	Predicts continuous va functions	lued				
	(<i>d</i>)	Regres	ssion				(iv)	Groups similar data					
	Cod	es:											
		(a)	(b)	(c)	(d)								
	(A)	(ii)	(iii)	(iv)	(i)								
	(B)	(iv)	(iii)	(i)	(ii)								
	(C)	(iii)	(i)	(ii)	(iv)								
	(D)	(ii)	(i)	(iv)	(iii)			8					
T.B.C.	: 17	7/18/SE	Г—II			13		P.	T.O.				

41.	Effective	transfer	rate	of	a	storage	device	is	defined	as	the	:
-----	-----------	----------	------	----	---	---------	--------	----	---------	----	-----	---

- (A) Ratio of total bytes per total seconds excluding overhead time
- (B) Ratio of total bytes per total seconds including overhead time
- (C) Ratio of total bytes per total seconds
- (D) Total bytes transferred

42. Indexed allocation strategy is suitable:

- (i) If file is large
- (ii) If file is usually accessed randomly
- (iii) If file is small
- (iv) If file is usually accessed sequentially
- (A) Only (i) and (ii)

(B) Only (ii)

(C) Only (iii)

- (D) Only (ii) and (iii)
- 43. Consider the following four processes with the length of the CPU burst time given in milliseconds (ms):

Process	Arrival	Time	Burst Time
$\mathtt{P}_{\mathtt{1}}$	0		8
P_2	1		4
P_3	, 2		9
P_4	3		5

What will be the average waiting time in case of preemptive and non-preemptive shortest job first scheduling algorithm?

- (A) 6.5 ms and 7.75 ms
- (B) 6.00 ms and 7.00 ms
- (C) 9.25 ms and 10.20 ms
- (D) 7.25 ms and 8.21 ms

T.B.C.: 17/18/SET—II

44.	A process is defined as:									
	A) A program under execution									
	(B) A program residing in seconds	B) A program residing in secondary memory								
	(C) A job in primary memory	*								
	(D) A program in high level langu	age kept on secondary storage								
45.	When a process creates a new proce	ess, following possibilities exist in terms								
	of the address space of the new pr	ocess:								
	(i) The child has the same progr	am and data as the parent.								
r	(ii) The child process has a new	program loaded into it.								
	Which of the above statement(s) is	/are true ?								
	15									
	(A) Only (i)	(B) Only (ii)								
	(C) Both (i) and (ii)	(D) Neither (i) nor (ii)								
46.	Each log record describes a single	operation of a translation write and has								
	the following fields:									
	(i) New value									
	(ii) Old value									
	(iii) Data item name									
	(iv) Translation name									
	Which of the above are true?									
	(A) Only (iii) and (iv)	(B) Only (i) and (ii)								
	(C) Only (i), (ii) and (iii)	(D) (i), (ii), (iii) and (iv)								
T.B.	.C. : 17/18/SET—II	P.T.O.								

47. Match the items of List-I with the items of List-II: List-II List-I Suffer from Belady's anomaly Page replacement algorithms No (i)Optimal (a)LRU (b) (ii)Yes Second-chance (c) **FIFO** (d)Codes: (a) (b) (c) (d)(A) (i)(i)(ii)(ii)(B) (i)(ii)(i)(i)(C) (i)(ii)(i)(ii)(D) (i) (ii)(i)(ii)If preemption is required to deal with deadlocks, then the following issues 48. need to be addressed: Only 'Selecting a victim' Only 'Rollback' Only 'Starvation' (C) 'Selecting a victim', 'Rollback' and 'Starvation'

Г.В.С. : 17/18/SET—II

49.	The	main advantage of implementing	g thr	eads in the kernel rather than in
	the	user mode library are that:	¥	
	(i)	It can take the advantage of m	ultipl	e processors if they are available.
	(ii)	If one thread blocks in the kerne	el serv	vice routine, other threads are still
28.5		able to run.		
	(iii)	Ability to assign different secur	rity a	ttributes to each thread.
	(A)	Only (i)	(B)	Only (ii)
	(C)	Only (iii)	(D)	(i), (ii) and (iii)
50.	Wha	t are the possible types of failu	re in	a distributed system?
	(i)	Network link failure		
	(ii)	Host failure		
	(iii)	Storage medium failure		
	(A)	Only (i) and (iii)	(B)	Only (ii) and (iii)
	(C)	Only (iii)	(D)	(i), (ii) and (iii)
51.	Whi	ch of the following are the desir	able	characteristics of an SRS?
	(i)	Traceable		
	(ii)	Consistent .		a
*	(iii)	Modifiable		
	(iv)	Verifiable		
	(A)	Only (i) and (ii)	(B)	(i), (ii), (iii) and (iv)
	(C)	Only (ii) and (iii)	(D)	Only (ii), (iii) and (iv)
T.B.C.	4	7/18/SET—II 17		P.T.O.

52.	Whi	ch of the following statements	are tru	e in the context of Agile Software
	Deve	elopment ? ,		
	(i)	It is Linear Development.		
	(ii)	It is Incremental Development	nt.	
	(iii)	It is Iterative Development.		
	(A)	Only (i) and (ii)	(B)	Only (i) and (iii)
	(C)	Only (ii) and (iii)	(D)	(i), (ii) and (iii)
53.	In t	he McCall's software quality r	nodel, s	oftware quality factor 'Reliability'
	cons	ists of the following:		
	(i)	Consistency		
	(ii)	Accuracy		
	(iii)	Error tolerance		
	(iv)	Simplicity		
	(A)	Only (i) and (ii)	(B)	Only (i) and (iii)
	(C)	Only (i) and (iv)	(D)	Only (i), (ii) and (iii)
54.	Whi	ch of the following statements	are co	rrect ?
	(i)	Defect prevention is a qualit	y assur	ance activity
	(ii)	Inspection is a quality contro	ol activi	ity
	(iii)	Training is a quality control	activity	y
	(iv)	Checkpoint review is a quali	ty conti	rol activity
	(A)	Only (i)	(B)	Only (i), (ii) and (iv)
	(C)	Only (iv)	(D)	Only (i) and (iv)
T.B.C.	. : 17	7/18/SET—II 1	8	

55.	Rea usir		perfor	mance	short	falls	risk	in software ca	an be	handled	by
	(A)	Simul	ation a	nd mo	deling		(B)	Task analysis			*
	(C)	Cost	benefit	analys	is		(D)	Team building	g		
56.	Whi	ch of t	he follo	wing i	s a no	n-fun	ction	al testing?			
	(A)	Pair-v	vise tes	ting			(B)	Cause-Effect (Graphii	ng	
	(C)	Bound	lary Va	lue A	nalysis		$_{0}(\mathbb{D})$	Mutation Test	ing		
57.	Whi	ch one	of the	followi	ing is	the lo	owest	level of cohesic	on ?		
	(A)	Funct	ional				(B)	Sequential			
	(C)	Coinci	dental				(D)	Temporal			
58.	Mat	ch the	items o	of List-	I with	the	items	of List-II:		1 1 2 2	
		Li	st-I		4			List-II			
		Proce	ss Mo	dels				Types of Pro	ojects		
	(a)	Water	fall mod	del			(<i>i</i>)	Short delivery			
	(b)	Protot	yping n	nodel			(ii)	User interface	is imp	ortant	
	(c)	Iterati	ve mod	el			(iii)	Existing manu	al syst	tem	
	(d)	Timeb	oxing n	nodel			(iv)	Requirements	are no	t known	in
		19	,					advance			
	Cod	es:				,					
		(a)	(b)	(c)	(d)						
	(A)	(iii)	(ii)	(iv)	(i)						
	(B)	(i)	(ii)	(iii)	(iv)					*	
	(C)	(iv)	(iii)	(ii)	(i)						
	(D)	(ii)	(iv)	(i)	(iii)						
ľ.B.C.	: 17	/18/SE	II—I			19				P.T.	0.
						198					

59.	Which of the following is <i>not</i> a software configuration managemen activity?
	(A) Auditing (B) Status Accounting
	(C) Control (D) Bug fixing
60.	Basic execution time model was developed by:
	(A) R. Pressman (B) S. Yamada
	(C) Victor Baisili (D) J.D. Musa
61.	Let double hashing use a hash function of the form:
	$h(k, i) = [h_1(k) + ih_2] \mod m$
	where $h_1(k) = k \mod m$
	$h_2(k) = 1 + (k \mod m_1)$
	$m = 701$ and $m_1 = 700$
	For key $k = 124858$, the first probe is to position 80, and then every
	is examined until the key is found or every slot is examined.
	(A) 257th slot (modulo m) (B) 275th slot (modulo m)
	(C) 337th slot (modulo m) (D) 355th slot (modulo m)
62.	The reverse polish notation equivalent to the infix expression:
	((a + b) * c + d)/(e + f + g)
	is:
	(A) $ab + c * d + ef + g + /$ (B) $ab + cd * + ef + g + /$ (C) $ab + c * d + efg + + /$ (D) $ab + c * d + e + fg + /$
63.	The solution to the recurrence relation
00.	
	$P(n) = \begin{cases} 1, & n = 1 \\ \sum_{k=1}^{n-1} P(k) P(n-k), & n \ge 2 \end{cases}$
	is:

(B) $O(n^4)$

(D) $\Omega(2^n)$

20

(C) $\Omega(n^3)$ T.B.C. : 17/18/SET—II

(A) $O(n^2)$

64. The Huffman coding is used to encode the message before transmitting over the network. Suppose the message contains the following characters with their frequency:

Character	a	ь	c	d	е	f
Frequency	10	14	17	18	21	50

Assume, each character in input message takes 1 byte. How many bits will be saved in the message if Huffman coding is used for transmission?

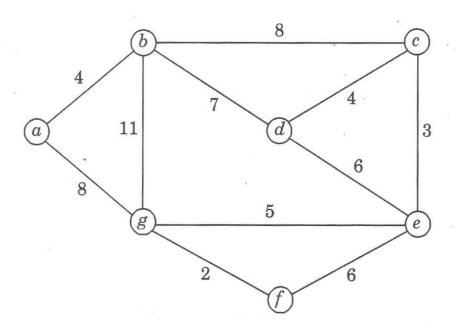
(A) 314

(B) 1040

(C) 726

(D) 414

65. The number of different binary trees with 5 nodes is :


(A) 252

(B) 51

(C) 42

(D) 24

66. For the graph given below, what is weight of minimum spanning tree?

(A) 24

(B) 25

(C) 26

(D) 27

67.	Give	n the fo	ollowing	g algori	thms:			
	(<i>i</i>)	Floyd-V	Warshal	11	*		2	
	(ii)	Transit	tive clos	sure				
	Whi	ch of the	algorit	hm(s) i	s(are) use	ed to co	mplete shortest paths	between an
	two	vertices	of a g	riven gr	aph?			
	(A)	Only (<i>i</i>)			(B)	Only (ii)	
	(C)	Both (and ((ii)		(D)	Neither (i) nor (ii)	
68.	Mat	ch the t	wo list	s:			8	
		List	-I (Alg	orithn	n)		List-II (Time)	. 1
	(a)	Knuth	Morris-	Pratt		(i)	$\theta(n)$	
	(b)	Fast F	ourier	Transfo	orm	(ii)	$\theta(n^2)$	
	(c)	Floyd-	Warsha	11		(iii)	$\theta(nlgn)$	
	(d)	Longes	st Com	mon Su	ıbsequenc	ce (iv)	$\theta(n^3)$	H W
	Cod	les :					a 4	
		(a)	(b)	(c)	(d)			
#1 61	(A)	(iii)	(i)	(iv)	(ii)			
	(B)	(i)	(iii)	(iv)	(ii)		2 **	
	(C)	(iii)	(<i>i</i>)	(ii)	(iv)			
	(D)	(i)	(iii)	(ii)	(iv)			
T.B.C	. : 1	7/18/SE	T—II		2	2		

69.	Consider the following statements:
	\mathbf{S}_1 : Las Vegas algorithms always produce correct or optimum results.
	\mathbf{S}_2 : Monte-Carlo algorithms produce correct or optimum result with some
	probability.
	Which of the following is correct?
	(A) Only S_1 (B) Only S_2
	(C) Both S_1 and S_2 (D) Neither S_1 nor S_2
70.	Consider the following problems:
	(i) Vertex cover problem ∈ NPC
	(ii) Clique problem ∈ NPC
	Which of the following is correct ?
	(A) Only (i) (B) Only (ii)
	(C) Both (i) and (ii) (D) Neither (i) nor (ii)
71.	The smallest finite automation which accepts the langauge $L = \{W \mid length\}$
	of W is disvisible by 5} has:
	(A) 4 states (B) 5 states
	(C) 6 states (D) 7 states
T.B.C	2. : 17/18/SET—II 23 P.T.O.

72.		ch of the following definitions b $\{a^nb^n \mid n \geq 1\}$?	elow	generates the same langauge a
		$A \rightarrow aAb \mid ab$		
	(ii)	$ab \mid (a^{\dagger}ab^{\dagger}b)$		
	(iii)	a^+b^+		
	(A)	(i) and (ii) only	(B)	(ii) and (iii) only
	(C)	(i) only	(D)	(ii) only
73.	Let	Σ_1 and Σ_2 be finite alphabets and	d let #	\sharp be a symbol outside both Σ_1 and
	Σ ₂ . Ι	Let f be a total function from Σ_1^*	to Σ_2	*. We say <i>f</i> is computable if there
2	exist	ts a turning machine M which giv	en ar	in input x in Σ_1^* , always halts with
	f(x)	on its tape. Let L denotes the lar	nguag	ge $\{x \# f(x) x \in \Sigma_1^*\}$. Which of the
	follo	wing is correct?		
	(A)	If f is computable then L is recu	ırsive	ly enumerable, but not conversely
	(B)	If f is computable then L is re	cursi	ve, but not conversely
	(C)	f is computable if and only if l	L is 1	recursively enumerable
	(D)	f is computable if and only if l	L is 1	recursive
74.	Cons	sider the following:		
	(i)	Dynamic memory allocation		
	(ii)	Inline expansion		
	(iii)	Type checking		
	Whi	ch of the above is performed du	ring	compilation ?
	(A)	(i) and (ii) only	(B)	(i) and (iii) only
	(C)	(ii) and (iii) only	(D)	(i), (ii) and (iii)
T.B.C.	: 17	7/18/SET—II 24		

75.	Mato	ch the f	collowing	g :				
		List	-I ,				List-II	
	(a)	Top do	wn par	sing		(i)	Type checking	
	(b)	Runtin	ne envi	ronmen	ts	(ii)	Activation records	
	(c)	Seman	tic ana	lysis		(iii)	Finite automation	
	(d)	Lexical	l analy	sis		(iv)	Leftmost derivation	
	Cod	les:						
		(a)	(b)	(c)	(d)			
	(A)	(i)	(iii)	(ii)	(iv)			
	(B)	(iii)	(ii)	(i)	(iv)			
	(C)	(i)	(ii)	(iv)	(iii)			
	(D)	(iv)	(ii)	(<i>i</i>)	(iii)			
76.	Con	sider th	ne follo	wing pr	oblems:			
	(i)	Wheth	ner a g	iven cor	ntext free	langu	age is regular	
	(ii)	Memb	ership	problem	for type-	0 lan	guages	(90)
	Wh	ich of t	he abov	ve are 1	undecidabl	le ?		
	(A)	Only	(i)			(B)	Only (ii)	
	(C)	Both	(i) and	(ii)		(D)	Neither (i) nor (ii)	
T.B.	C. : 1	7/18/SE	II—T		25	5	. 1	P.T.O

77. Let L be any language. Define language chop (L) by removing the two leftmost symbols of every string in L given by

Chop (L) =
$$\{W \mid vW \in L \text{ with } |v| = 2\}$$

We define another language even (W) as the strings obtained by extracting from W the letters in the even-numbered positions and even $(L) = \{\text{even } (W) \mid W \in L\}.$

If L is regular language, then:

- (A) Even (L) is regular and chop (L) is not regular
- (B) Even (L) is not regular and chop (L) is regular
- (C) Both even (L) and chop (L) are regular
- (D) Both even (L) and chop (L) are not regular
- 78. Consider the following types of languages:

L₁: Regular

L₂: Context free

L₃: Recursive

L₄ : Recursively enumerable

Which of the above is not true?

- (A) $\bar{L}_3 \cup L_4$ is recursively enumerable
- (B) $L_1 \cup \overline{L}_2$ is context free
- (C) $L_1^* \cap L_2$ is context free
- (D) $\overline{L}_2 \cup L_3$ is recursive

79. Consider a context free grammar with the following productions:

$$S \rightarrow AA \mid B$$

$$A \rightarrow aA |Aa|b$$

$$B \rightarrow aBaa \mid b$$

Where S is the start symbol, A and B are non-terminals and a and b are the terminals. The language generated by this grammar is:

(A)
$$\{a^i \ ba^j \ ba^k \ | \ i, j, k \ge 0\} \cup \{a^n \ ba^{2n} \ | \ n \ge 0\}$$

(B)
$$\{a^i \ ba^{2j} \ ba^k \ | \ i, j, k \ge 0\} \cup \{a^n \ ba^{2n} \ | \ n \ge 0\}$$

(C)
$$\{a^{2i}\ ba^j\ ba^k\ |\ i, j, k \ge 0\} \cup \{a^n\ ba^{2n}\ |\ n \ge 0\}$$

- (D) The set of all strings over $\{a, b\}$ containing at least two a's
- 80. Which of the following statements are true?
 - S₁: Every left-recursive grammar can be converted to a right-recursive grammar and vice-versa.
 - S₂: The derivation trees of strings generated by a context-free-grammar in Chomsky normal form are always almost complete binary trees.

 \mathbf{S}_3 : Every subset of a recursively enumerable set is recursive.

(A) Only (i)

(B) Only (i) and (ii)

(C) Only (i) and (iii)

(D) (i), (ii) and (iii)

81. Which of the following layers of OSI reference model is also called end-toend layer?

(A) Data link layer

(B) Network layer

(C) Transport layer

(D) Session layer

82.		TES .		hm, who				of cipher text C, if the plain text
	(A)	\mathbf{Z}	,				(B)	E
	(C)	F	,				(D)	A
83.	bein	ppose we want to send a sequence ng 8 bit, at the rate of 10 images the channel?						
	(A)	512 kk	pps				(B)	1.248 Mpbs
	(C)	192 kk	ps				(D)	1.536 Mbps
84.	Mat	ch the	followin	ig:				
		List	t-I					List-II
	(a)	Applic	ation la	ayer			(i)	TCP
	(b)	Transp	oort lay	rer			(ii)	SLIP
	(c)	Netwo	rk laye	r			(iii)	HTTP
	(d)	Data 1	ink lay	er			(iv)	BGP
	Cod	les:						
		(a)	(b)	(c)	(<i>d</i>)			
	(A)	(ii)	(<i>i</i>)	(iv)	(iii)			*
	(B)	(iii)	(iv)	(i)	(ii)			
	(C)	(iii)	(i)	(iv)	(ii)			
	(D)	(ii)	(iv)	(i)	(iii)			
85.	_							r network part of class B address, 3 networks would have been then?
	(A)	16384					(B)	65536
	(C)	16382					(D)	65534
T.B.C	C. : 1	7/18/SE	T—II			28	P	

86.	Whi	ch of the following statements	are <i>tr</i>	rue ?		
	(i)	TCP segment can have maxim	ium 6	55515 bytes data		
	(ii)	TCP supports connectionless tr	ansfe	r		
	(iii)	Total length of TCP segment	is 655	535		
	(iv)	TCP segments can have maxim	num	65535 bytes data		
	(A)	(i) and (ii)	(B)	(i) and (iii)		
	(C)	(iii) and (iv)	(D)	(i) and (iv)		
87.	The	technique of temporarily delaying	ng ou	tgoing acknowledgements, s	o that	
	they	can be hooked onto the next of	utgoi	ng data flame is known as	;	
	(A)	Bit stuffing	(B)	Piggy backing		
	(C)	Pipelining	(D)	Broadcasting		
88.	Whi	ch of the following devices opera	ates i	n data link layer ?		
	(A)	Hub	(B)	Modem		
	(C)	Bridge	(D)	Switch		
89.	Whic	ch layer of OSI reference model u	ses th	ne ICMP (internet control me	essage	
	proto	ocol) ?				
	(A)	Transport layer	(B)	Network layer		
	(C)	Application layer	(D)	Data link layer		
90.	Whic	ch of the protocol is an applicat	ion la	ayer protocol ?		
	(A)	NNTP	(B)	OSPF		
	(C)	BGP	(D)	ICMP		
r.B.C.	: 17	/18/SET—II 29			P.T.O.	

91.	Whi	ch of the following statements is	(are)	not correct ?			
	(i)	A context free grammar is also	calle	d as Phrase Structured Grammar			
	(ii)	A context free grammar is suit	able	for free word order language			
	(iii)	A context free grammar is Posi	tiona	l Grammar			
	(A)	(i) only	(B)	(ii) only			
	(C)	(iii) only	(D)	(i), (ii) and (iii)			
92.	Wha	t is relationship between car an	ıd au	tomobile ?			
	(A)	Car is hyponym of automobile	(B)	Car is hypernym of automobile			
	(C)	Car is meronym of automobile	(D)	Car is synonym of automobile			
93.		al maximum, plateau, ridges rithms ?	are	e difficulties in which search			
	(A)	Hill climbing	(B)	Best first search			
	(C)	Breadth first search	(D)	Depth first search			
94.	Whi		re tri	ue with respect to a game search			
	(i)	A utility function gives values	to th	e terminal states.			
	(ii)	A terminal test determines who	en ga	ame is over.			
	(iii)	A successor function returns a list a legal move and resulting star		(move, state) pairs, each indicating			
	(A)	(i) and (ii) only	(B)	(ii) and (iii) only			
	(C)	(i) and (iii) only	(D)	(i), (ii) and (iii)			
95.	Ontology Mapping is also referred as:						
	(A)	Ontopology Taxonomy	(B)	Ontology Integration			
	(C)	Ontology Enumeration	(D)	Ontology Alignment			
96.	АН	orn clasue is a clause with		positive literal.			
	(A)	At least one	(B)	At most one			
	(C)	At least two	(D)	At most two			
T.B.C	. : 1'	7/18/SET—II 30					

97. Consider the following two relations:

R_1	Y ₁	Y_2	Y ₃	Y_4
X_1	0.9	0.7	0.5	0.5
X_2	0.7	0.4	1.0	0.2
X_3	0.8	0.9	0.4	0.1

R_2	Z_1	\mathbb{Z}_2	Z_3	Z_4
Y_1	0.9	0.7	0.6	0.5
Y_2	0.8	0.3	0.2	0.7
Y_3	0.9	0.3	1.0	0.9
Y ₄	0.8	0.9	0.7	0.8

What will be the value of $\mu_{R10R2}\ (X_1,\ Z_1)$ using max product composition ?

(A) 0.81

(B) 0.81, 0.63, 0.54, 0.49

(C) 0.81, 0.63, 0.72

(D) 0.81, 0.63, 0.72, 0.49

98. A 3-input 2-output NN (Neutral Network) has weigh values $w_{11} = 0.6$, $w_{12} = 1.1$, $w_{21} = 0.7$, $w_{22} = 0.5$, $w_{31} = 0.8$ and $w_{32} = 0.2$. It is given an input of $[0.3 \ 0.7 \ 1.6]^{\mathrm{T}}$. What is the output of NN if binary step function is used. Assume threshold = 1.5.

(A) [1 0]

(B) [1 1]

(C) [0 1]

(D) [0 0]

99. Which is a refutation complete inference procedure for propositional logic?

(A) Clauses

- (B) Variables
- (C) Propositional Resolution
- (D) Proposition

100. The term Roulette wheel, windowing, Boltzmann are related to which phase of Genetic Algorithm?

(A) Selection

(B) Crossover

(C) Mutation

(D) Encoding

T.B.C.: 17/18/SET—II