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QUESTION PAPER SPECIFIC INSTRUCTIONS
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Please read each of the following instructions carefully before attempting questions.
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1. There are 08 (eight) questions in all, out of which FIVE are to be attempted.
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2. Question Nos.1 and 5 are compulsory. Out of the remaining SIX questions, THREE are to be
attempted selecting at least ONE question from each of the two Sections I and II.
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3. All questions carry equal marks. The number of marks carried by a question / part is indicated
against it.
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4. Answers must be written in legible handwriting. Each part of the question must be answered in
sequence and in the same continuation.
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5. Unless otherwise mentioned, symbols and notations have their usual standard meanings. Assume
suitable data, if necessary and indicate the same clearly.

TS ATALTH T qT STLh ST HIF of 3 IH TI T H SR e | T T ATAT oo 7 6T 97

g, Tlieh 3T Hehd e o9 AT ATF o T@d &

6. Attempts of questions shall be counted in sequential order. Unless struck off, attempt of a question
shall be counted even if attempted partly. Any page or portion of the page left blank in the Answer
Booklet must be clearly struck off.
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7. Re-evaluation / Re-checking of answer book of candidate is not allowed.
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SECTION-I
ATATT-1
State and prove Bayes theorem. Let 5 men out of 100 and 25 women out of 10000 are color blind. A

color blind person is chosen at random. What is probability of his being male assuming that the

number of males and females are in ratio 2:3? (10)
IS % THT A FAT A2d 95 Do | A & 100 T H 5 T&T Td 10000 AT H 25
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If X and Y are independently identically distributed random variables from uniform distribution

U(0,10) then show that: (10)

E[Min (X,Y) + Max (X,Y)] = E(X) + E(Y)
IfT X X Y T& 89 deq U(0,10) & 0= Td qHATATIE® [T 0 1§~ 9% & af
feamzu

E[Min (X,Y) + Max (X,Y)] = EX) + E(Y)

Examine whether the Weak law of large numbers holds for the mutually independent
sequence {X}}, which obeys the probability law (10)

P(X, =2F) = P(X, = —2%) =27%*"1and

P(X,=0)=1-272F
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P(X, =2 = P(X, = —2K) = 272k 1 3T

P(X,=0)=1-—272%
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If random variables X and Y have joint have joint probability density function (10)
_ (2 if 0<x<y<l1
flxy) = {O otherwise,

then find
a) P(Y<%|X<%)
b) P(O<X<%|Y=%)
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a) my<§|x<§
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1
b) m0<X<E|Y_Q

. s 1 = 1 =
Suppose that x; denotes it" natural number and Y, = ~ XX, Yo =< YMlx, Yy =

1 = 1 > 5o = . . . .
=Y 2x; and Y, == X2 x;. Show that Y,,Y,, Y5 and Y, are in arithmetic progression.

n T n
(10)
T 3 x;, i 3 TEfE wen AR A v Y = N Y, = - X, Vs =

n
% 7i1=+3zxi ALY, = % Z?:fxi RECIEIET 71:?2:?3 ALY, A=A o] ﬁ% |
Prove that Binomial distribution with parameters n and p, tends to Poisson distribution, when
n - o0o,p = 0and np = A (a finite number). If distribution of random variable X is Poisson

with parameter % then find E[T'(X + 1)]. (15)
g R & n 3T p y= arar fGug §ed, @M ded ff A e grar 8, 99 n -
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Discuss properties of regression coefficients in simple regression. Let regression line of Y on
X has negative slope and ¥ represents estimated values of Y. If 02 = 160, 03_}; =50, ¢Z =
90 and regression lines, Y on X and X on Y intersect each other at point (4, 5) then obtain
equation of both regression lines. (15)
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If X, X,, X3,...,X, identically independently distributed random samples from the
population having distribution

1-6, x=0
ﬂm@—{ 9, x=1 0<0O<I1.

then obtain sampling distribution of T = )i~ x; . Mention some characteristics of distribution

of T. (15)
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_(1-9, x=0
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Let X;, X5, X5, ... , X, are random samples from a normal population with mean p and
variance o2 and T, = %2?=1X ; and T, =Y" (X; —X)?. Show that T; and T, are
independent. (15)

A o B X, Xy, X3, ..., X, ATET p 301% STERT 02 AT Uah THHTT ded | ATg=a Taael g
1 . — . .
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If X and Y are independent y? variables with n; and n, degree of freedom respectively then

obtain distribution of . (10)

I X 3T Y ®HM: ny UA n, TETGT &L qT 93 2 9 8 ar %Wdﬂwﬁl

Obtain Cramer-Rao inequality, which provides a lower bound (15)

[v'(6)]?
1(6)

to the variance of an unbiased estimator of y(6).
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Define consistency and unbiasedness of an estimator. Obtain unbiased estimator for 82 in

case of binomial distribution with parameters n (known) and 6. (10)
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The observations obtained from a population with probability density function
1
f(x;9)=5exp(—lx—9|); —o<x <o

are 0.46, 0.38, 0.61, 0.82, 0.59, 0.53, 0.92. Find the maximum likelihood estimator for 6. (15)
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1
f(x;9)=§exp(—lx—el); —00 < x <

T, & 9TH T 0.46, 0.38, 0.61, 0.82, 0.59, 0.53, 0.92 T | 6 FT ATIHAH HATAAT SATHAT AT
EEDE

SECTION-II
SAATI-IT

Let X>1 is critical region for testing the hypothesis Hy: 0 = 2 against H;: 0 = 1, on the

basis of single observation from the population,

0 exp(—0x), 0<x<w
f(x,6) = ,
, otherwise.
Show that power of the test is square root of probability of type I error. (10)
| o o6 wwmie
0 exp(—0x), 0<x<w
f(x,0) =
, e,

T oI 7T U TeA07 3 SMLTE 9T IaeqqT Hy: 0 = 2 @%g  Hy: 0 = 1 &1 19 & o X>1
Fitae & g | fammd fo adieror it orf<r, o e (1) T2 & Ffe &t G9raeT F7 [T g |

Let X;, X5, X3, ... , X, arandom sample from N(u,1). Obtain best critical region and most

powerful test for testing the hypothesis Hy: u = g against Hq: u < pg. (10)

A o Xy, Xy, X3, ..., X, , N(,1) & for0 10 Fmgf=as afaesl § | IR T Hy: p = u, F= s
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Discuss Kolmogorov test for goodness of fit. (10)

A A Tohe &l STT= o o0 HIHNIIE e il THATT |

Let X~N(0,1). Develop SPRT for testing H,: 8 = 3 against H;: 0 = 4 given that 0=0.8 and
=0.03. (10)

AT o X~N(6,1). TT% a=0.8 T B=0.03 § AT TFHeIAT Hy:0 =3 =g H:0 =4 F om
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In a population with N=4, the values of y; are 2, 4, 7 and 11. Calculate the sample mean y for

all possible simple random samples (without replacement) of size 2. Verify that y is unbiased
to population mean. Also verify that V(j) = =52,

(15)
Nn
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Explain systematic sampling procedure. Discuss the advantages of this method over simple

random sampling. (10)
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Discuss a method of selection of simple random sample. Obtain variance of sample mean in

simple random sampling without replacement. (15)
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Explain various principles of experimental design and how they are realized in the Latin

Square Design. Give complete analysis of Latin Square Design. (15)
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What is meant by a ‘missing plot’ in a design of experiment? Discuss Yates’ method of

estimation of a ‘missing plot’ observation. (10)
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Define main effects and interaction effects of 2° factorial experiments. Describe the

computation of main effects and interaction effects. Write ANOVA table when experiment is

conducted in r blocks. (15)
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Explain the purpose of stratification in a sample survey. For a stratified population with the

following information, find the size of sample to be selected from each stratum under

proportional and Neyman allocation: (15)
Stratum No. I II 111 1A%
Stratum Size (NV;) 20 25 40 15
Mean square S7 4 16 25 9

Sample size (1n)=30.
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T HEAT I 11 I v
AT ATHE (N)) 20 25 40 15
T AN S? 4 16 25 9
gfasl s (n)=30.

Describe regression method of estimation. Find out the mean square error of linear

regression estimator of the population mean and compare it with that of ratio estimator. (15)
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Define balanced incomplete block design (BIBD). Derive the intra block analysis of BIBD.
(10)
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Write its ANOVA table. Estimate the treatment effect.



