DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

TEST BOOKLET SERIES

TEST BOOKLET WORKSHOP SUPERINTENDENT (POLYTECHNIC)

Time Allowed : 2 Hours]		[Maximum	
	All questions carry panel marks		

INSTRUCTIONS

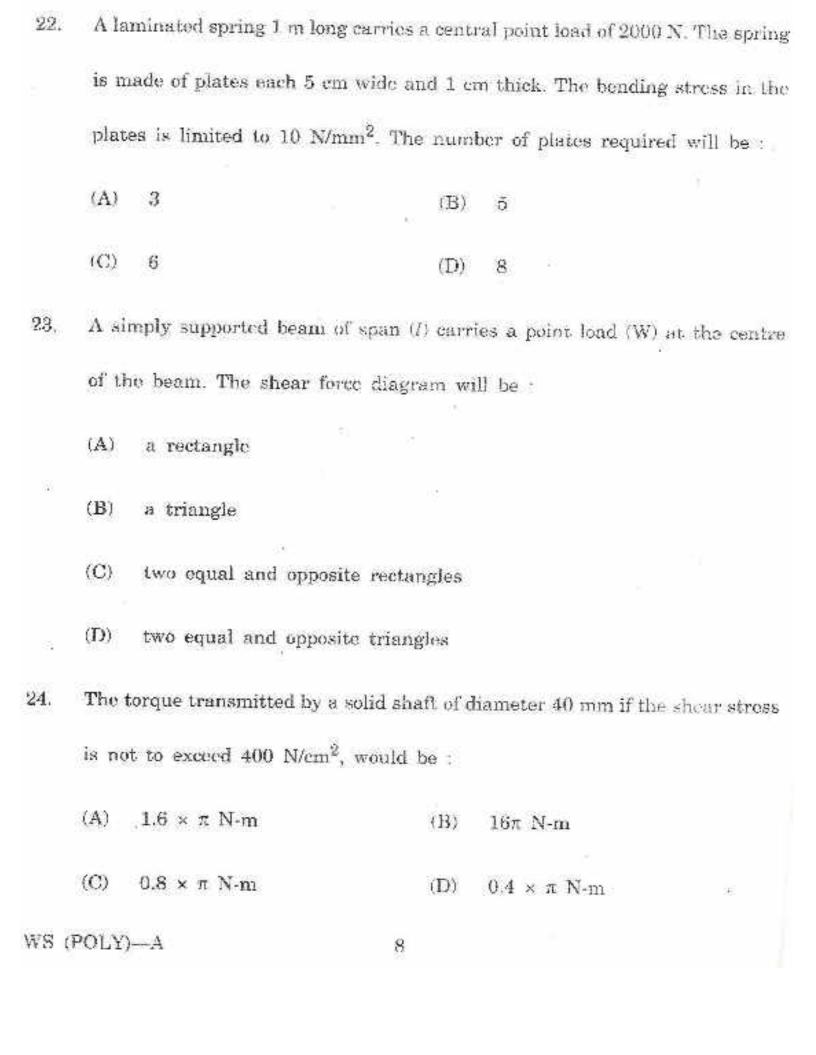
- Immediately after the commencement of the examination, you should check that test booklet does not have any unprinted or torn or missing pages or items, etc. If so, get it replaced by a complete test booklet.
- Encode clearly the test booklet series A, B, C or D as the case may be in the appropriate place in the answer sheet.
- Write your Roll Number only in the box provided alongside.
 Do not write anything else on the Test Booklet.
- This Test Booklet contains 100 items (questions). Each item comprises four responses (answers). Choose only one response for each item which you consider the best.
- 5. After the candidate has read each item in the Test Booklet and decided which of the given responses is correct or the best, he has to mark the circle containing the letter of the selected response by blackening it completely with Black or Blue ball pen. In the following example, response "C" is so marked:
 - A B D
- Do the encoding carefully as given in the illustrations. While encoding your particulars
 or marking the answers on answer sheet, you should blacken the circle corresponding to
 the choice in full and no part of the circle should be left unfilled.
- 7. You have to mark all your responses ONLY on the ANSWER SHEET separately given according to 'INSTRUCTIONS FOR CANDIDATES' already supplied to you. Responses marked on the Test Booklet or in any paper other than the answer sheet shall not be examined.
- All items carry equal marks. Attempt all items. Your total marks will depend only on the number of correct responses marked by you in the Answer Sheet. There will be no negative marking.
- Before you proceed to mark responses in the Answer Sheet fill in the particulars in the front portion of the Answer Sheet as per the instructions sent to you.
- 10. After you have completed the test, hand over the Answer Sheet only, to the Invigilator.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

WORKSHOP SUPERINTENDENT (POLYTECHNIC)

Time	Allowe	ed : 2 Hoursl		[Maximum Marks : 100			
1.	Which	of the following coal has t	he high	est calorific value ?			
	(A)	Anthracite	(B)	Bltuminous			
	(C)	Lignite	(D)	Peat			
2.	In bi	nary vapour cycle :					
	(A)	Mercury is used in the bot	toming	cycle			
	(B)	Steam is used in topping	eyele				
	(C)	Mercury is used in topping	g cycle				
	(D)	Either mercury or steam i					
3.	The thermal efficiency of a gas turbine with regenerator is maximum wien						
	pres	sure ratio is :					
	(A)	less than 1.3	(B)	more than 1.0			
	(C)	equal to 1.0	(D)				
4.	Dea	eration of feed water in a R	ankine v	apour cycle is carried out buse			
	it r	educes:					
	(A) Cavitation of boiler feed pumps						
	(B)	. Corrosion caused by oxyg	gen				
	(C)	Heat transfer coefficient					
	(D)	pH value of water					
W	S (POL	.Υ)—Λ	2	W.			

5.	Mors	se test is used to determine:	
	(A)	Indicated power for multicylinder	engines
	(B)	Shaft power	
	(C)	Mean effective pressure	
	(D)	Temperature of the exhaust gases	
3.	Lean	mixture in an automobile is requir	red during :
	(A)	Idling (B)	Starting
	(C)	Accelerating (D)	Cruising
t.	Preci	se petrol injection system is:	1 2 8
	(A)	Direct injection	
	(B)	Sequential injection	
	(C)	Throttle body injection	
	(D)	Port injection	
	Mist	lubrication is mainly used in :	
	(A)	Four-stroke petrol engine	,
	(B)	Four-stroke diesel engine	
	(C)	Two-stroke petrol engine	
	(D)	Wankel engine	


9.	In compound compression system with intercooling in a refrigeration cycle							
	the s	uction v	apour to th	ne second si	age of	compression	is:	
	(Λ)	Superh	eated	*	(B)	Wet		
	(C)	Dry sa	turated		(D)	Subcooled		
10.		ctane coi	ntent in a	fuel for S.I	. engin	es :		
	(A)	retards	auto-ignit	ion				
	(B)	acceler	ates auto-i	gnition				
	(C)	does n	ot affect a	uto-ignition				
	(D)	none o	f the abov	e				
11.	The efficiency of a Carnot engine is 0.75. If the cycle is reversed its coefficient							
	of p	erforman	ce as heat	refrigerato	r is :			
	(A)	0.25			(B)	0.83		
	(C)	1.33			(D)	4		S
WS	(POL	Y)—A		4	1			

	(A)	Ammonia is absorbed	in hydrogen			
	(B)	Ammonia is absorbed	in water			18
	(C)	Ammonia evaporates i	n hydrogen			
	(D)	Hydrogen evaporates i	n ammonia	.T.)		
13,	A sla	iple saturated refrigerati	on cycle has t	he followin	g state point	s, enthalpy
	after	compression = 425 kJ/kg	, enthalpy aft	er throttlin	g = 125 kJ/kg	g, enthalpy
9	befor	e compression = 375 kJ	/kg. The COI	P of cycle s	will be :	
	(A)	ō	(B)	3.5		¥.
	(C)	6	(D)	10		
*	The p	process of removing moist	ture from air	at constant	dry bulb te	mperature
	is kn	own as:				
	(A)	Sensible heating	(B)	Sensible	cooling	
	(C)	Humidification	(D)	De-humid	ification	
	(POLY)	$-\Lambda$	5			P.T.O.

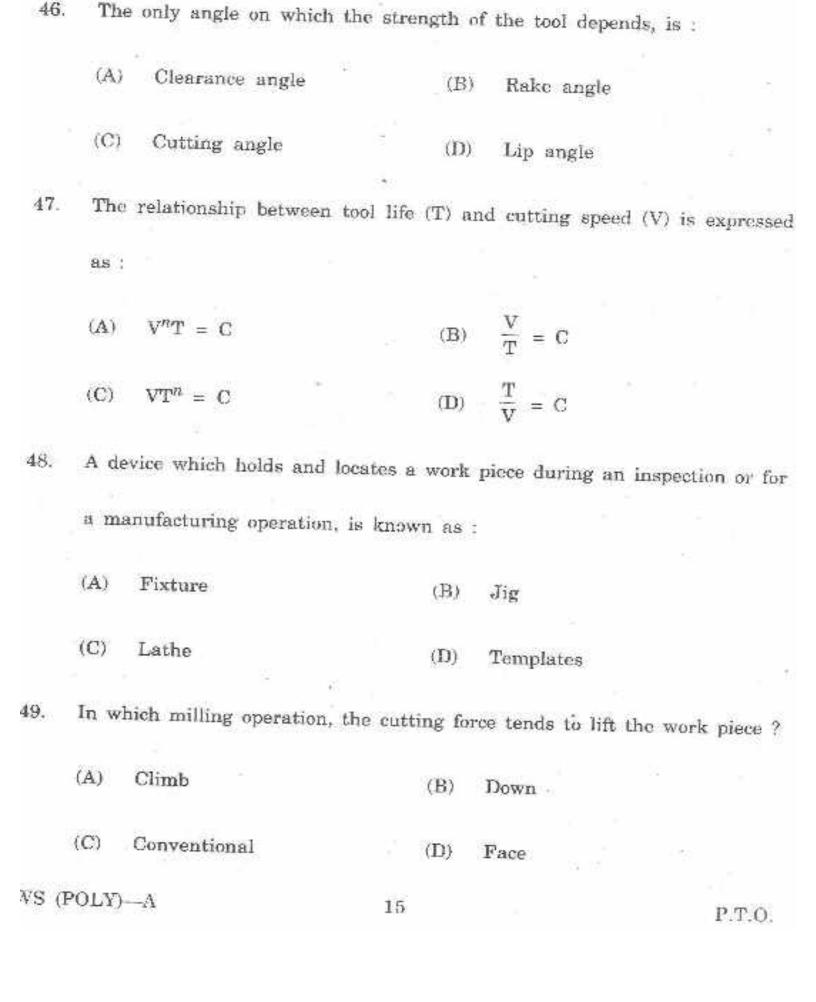
In electrolux refrigerator:

The p	process of maintaining the sp	eed of a s	team turbine constant for various			
load	conditions is known as :					
(A)	Reheating	(B)	Bleeding			
(C)	Governing	(D)	Cooling			
A co	mposite wall consists of the	hree diffe	rent materials having thermal			
conductivity k , $2k$ and $4k$ respectively. The temperature drop across different						
mate	rials will be in the ratio:	4				
(A)	1:1:1	(B)	1:2:4			
(C)	4:2:1	(D)	2:4:1			
A 30 mm OD pipe is to be insulated with asbestos having a thermal conductivity						
of 0.1 W/mK. The convective heat transfer coefficient is 5 W/m ² /K. The critical						
radius of insulation for this pipe would be:						
(A)	10 mm	(B)	20 mm			
(C)	40 mm	(D)	60 mm			
(POLY)—A	6				
	load (A) (C) A condumate (A) (C) A 30 of 0.1 radiu (A) (C)	load conditions is known as: (A) Reheating (C) Governing A composite wall consists of the conductivity k, 2k and 4k respective materials will be in the ratio: (A) 1:1:1 (C) 4:2:1 A 30 mm OD pipe is to be insulated of 0.1 W/mK. The convective heat radius of insulation for this pipe (A) 10 mm	(A) Reheating (B) (C) Governing (D) A composite wall consists of three different conductivity k, 2k and 4k respectively. The materials will be in the ratio: (A) 1:1:1 (B) (C) 4:2:1 (D) A 30 mm OD pipe is to be insulated with asbest of 0.1 W/mK. The convective heat transfer contains of insulation for this pipe would be (A) 10 mm (B) (C) 40 mm (D)			

18.	A counter flow heat exchanger, the hot fluid is cooled from $110^{\circ}\mathrm{C}$ to $80^{\circ}\mathrm{C}$							
	by a cold fluid which gets heated from 30°C to 60°C. LMTD for heat exchanger							
	is:							
1 3	(A)	80°C	16	(B)	50°C			
	(C)	30°C		(D)	20°C			
19.	The	temperature of a sc	olid surface	is raised	from 22'	7°C to 727	°C, the er	nissive
	powe	er of the body will	change f	rom E ₁ to	E ₂ suc	ch that E	$_2$ /E $_1$ is :	
	(A)	400		(B)	16			
	(C)	4000		(D)	1600			
20.	The ratio of modulus of rigidity to bulk modulus for a Poisson's ratio of 0.25							
	woul	d be:						
	(A)	2/3		(B)	2/5			
	(C)	3/5		- (D)	1.0			£
21.	A cold rolled steel shaft is designed on the basis of maximum shear stress							
	theory. The principal stresses induced at its critical section are 60 MPa and							
	- 60	MPa respectively.	If the yiel	d stress fo	or the sl	haft mater	rial is 360) MPa,
	the f	actor of safety of	the design	is:				
	(A)	2		(B)	3			
	(C)	4		(D)	5			
WS (POLY)—A		7				P.T.O.

25	5. If	the diameter of a long colu	mn is reduced	by 20%, the percer	ntage of reduction
		Euler's buckling load is		sa usceniosse f uncien	S. S. COUCHON
	(A	40	(B)	36	
	(C)	49	(D)	59	
26.	In	virtual work principle, the	work done by	the frictional force	acting on wheel
		en it rolls without slip is			
	(A)	Zero	(B)	Positive	
	(C)	Negative	(D)	None of these	*
27.	A b	all and socket joint forms			
	(A)	Turning pair	(B)	Rolling pair	2
	(C)	Spherical pair	(D)	Sliding pair	
28.	A ki	nematic chain having N	links will hav	ve :	
	(A)	(N - 1) inversion	₽.		
	(B)	N inversion			
	(C)	(N - 2) inversion			
	(D)	(N - 3) inversion			
WS (POLY)	—A	9		P.T.O.

29	9. If t	he angle of repose is 30°, the maximum efficiency of inclined plane for
		ion up the plane is :
	(A)	50%
	(B)	33.3%
	(C)	75%
	(D)	Not possible to find
30	. The	angular velocities of two pulleys connected by crossed belt or open belt
	are	
	(Λ)	directly proportional to their diameters
	(B)	inversely proportional to their diameters
	(C)	directly proportional to square of their diameters
	(D)	inversely proportional to square of their diameters
31.	The	crowning of the pulleys is done to :
	(A)	prevent the belt running off the pulley
	(B)	improve the shape of pulley from safety considerations
	(C)	improve the strength of the pulley
8	(D)	improve the torque transmitted by the pulley
TO SEASON	(POLY)	-A 10


32.	The	maximum fluctua	tion of ener	rgy of f	lywheel :		
	(A)	is directly propo	rtional to c	oefficier	nt of fluctu	ation of sp	eed
	(B)	is directly propo	rtional to s	quare o	of angular	velocity of	flywheel
	(C)	is directly propo	rtional to n	noment	of inertia	of flywheel	
	(D)	all of the above					12 15
33.	If th	ne ball masses of a	governor l	ave sar	me speed f	or all radii	of rotation
	it is	said to be :					
	(A)	Stable		(B)	Hunting		
	(C)	Isochronous	60	(D)	Sensitive		
34.	The	product of circular	pitch and	the dia	metral pite	ch is equal	to:
	(A)	2π		(B)	π		
	(C)	$\pi / 2$		(D)	1		
35.	The	path of the point	of contact l	oetween	the involu	ite teeth p	rofile gears
	is:	*					
	(A)	Circle					
	(B)	Straight line			. 9		
	(C)	Complex curve					
	(D)	Parabola					
VS (POLY)	—A	11				P.T.O.

36.	The	The Burger's vector lies parallel to the dislocation line along the axis of a							
	line	of atoms in the same pla	ne in :						
	(A)	Screw dislocation	(B)	Edge dislocation					
	(C)	Cracks	(D)	Vacancies					
37.	The	locations of atoms and the	ir particular	arrangement in a given crystal					
	are	described by means of :							
	(A)	Potential energy -	(B)	Space lattice					
	(C)	Intermolecular bond	(D)	Diffusion					
38.	The	ability of a material to	withstance	bending without fracture is					
	knov	vn as:							
	(A)	Mechanical strength	(B)	Stiffness					
	(C)	Toughness	(D)	Ductility					
39.	The	process of growing large n	notecules from	m small molecules is known as:					
	(A)	Polymerization	(B)	Polymorphism					
	(C)	Hysteresis	(D)	Allotropy					
WS	(POLY	?)—A	12						

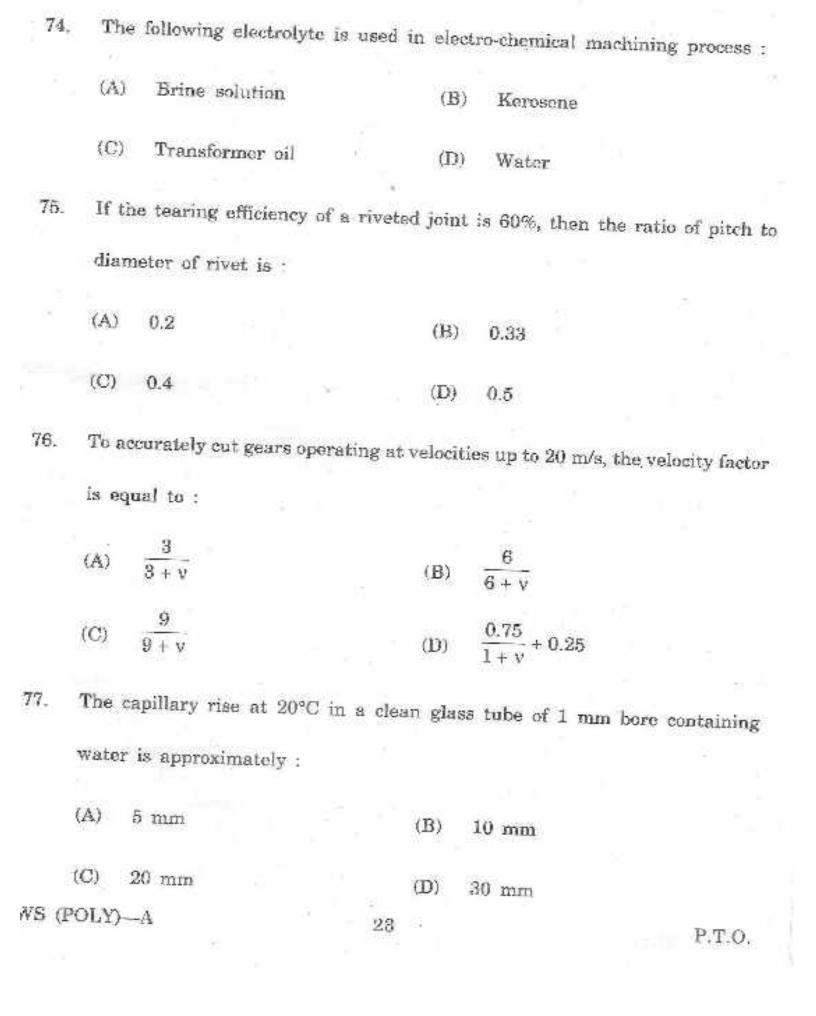
	rate	s of loading is known as	:					
	(A)	Hardness test	(B)	Impact test				
	(C)	Fatigue test	(D)	Torsion test				
41.	To i	ncrease the corrosion resi	stance of ste	el:				
	(A)	Vanadium is added as	an alloying	element				
	(B)	Chromium is added as	an alloying	element				
	(C)	Nickel is added as an a	lloying elem	ent				
	(D)	Copper is added as an	alloying elen	nent				
42.	The first product in the process of converting iron ore into useful metal from							
	a bla	st furnace is known as :						
	(A)	Cast iron	(B)	Wrought iron				
	(C)	Pig iron	(D)	Steel				
WS	(POLY)	—A	13		P.T.O.			

40. A test used to determine the behaviour of materials when subjected to high

43.	Who	en earbon in the cast iron	is mostly	y in free state, the cast i	ron is
	knov	wn as i			
	(A)	Molted cast iron	(B)	White cast iron	
	(C)	Grey cast iron	(D)	Black cast iron	
44.	The	process of introducing carbon	and nit	rogen into a solid ferrous al	lley is
	know	rn as:			
	(A)	Carbonitriding	(B)	Nitriding	
	(C)	Carburizing	(D)	Cyaniding	
45.	In ob	lique cutting system, the chip	flows ov	or the tool face and the dire	ection
	of the	e chip flow velocity is :			
	(A)	Normal to the cutting edge	1		
	(B)	Parallel to the cutting edge			
	(C)	Inclined with the normal to	the cut	ting edge	
	(D)	None of the above			
NS (POLY)	—Λ 1.	4		+ 1

50.	Wh	ich of the following oper	ation is requ	ired for making a	chamfer on the
	edg	e of a hole ?			
				- 10 m	
	(A)	Spot facing	(B)	Countersinking	
			+1		
	(C)	Counterboring	(D)	Reaming	
51.	In e	electro-discharge machini	ng process, in	order to remove	naximum metal
	and	have minimum wear or	the tool :		
	(A)	the tool is made catho	ode and work	piece as anode	
	(B)	the tool is made anod	e and the wo	rk piece as catho	le
	(C)	the tool and work piece	ce should be o	of different metals	
Š	(D)	none of the above		+1	
2.	Inade	equate penetration in ca	se of welding	operation will le	ad to :
	(A)	Crack formation	(B)	Corresion	
	(C) -	Diffusion	(D)	Undercutting	
/S (I	POLY))—A	16	*	

Ð.	f. The	process of makir	ig hollow casti	ngs of d	esired thickness by permaner	t mould
	wit	hout the use of	cores is know	n as :		
	(A)	die casting		(B)	slush casting	
	(C)	pressed castin	8	(D)	centrifugal casting	
54.	The	colour marked	on the surfac	e of a p	oattern to be machined is :	
	(A)	black		(B)	green	
	(C)	red		(D)	blue	
55.	The	most economic or	der quantity	in term	s of total item consumed pe	r vear
					ie annual inventory carryin	
		er item is given				
	(A)	$\frac{\Delta P}{2C}$		(B)	2 AP C	
	(C)	APC		(D)	$\sqrt{\frac{2 AP}{C}}$	
56.	Critica	al path is obtain	ed in PERT	analysi	s by joining events having	i d
	(A)	Maximum slack		(B)	Minimum slack	
	(C)	Negativo slack		(D)	Zero slack	
WS (I	POLY)-	-Λ	17		P./	r.o.


57.	The a	ectivities in a network diagram are re	presented by a :
23	(A)	Circle	
	(B)	Square	
	(C)	Rectangle	
	(D)	Simple arrow drawn from left to righ	nt
58.	Verni	er caliper gauge improves the :	
	(A)	measuring sensitivity	
	(B)	accuracy	
	(C)	repeatability	
	(Ď)	resolution	
59.	The r	atchet mechanism in a micrometer sc	rew gauge serves to
	(A)	Check wear out	
	(B)	ensure a uniform measuring force	
	(C)	eliminate play	a
	(D)	use it as a snap gauge	
WS	(POLY)	A 18	4

60.	All t	the working surfa	ces and the	cylindz	ical surfaces of the	rollers of sine
	bar	have a surface fi	nish of the	order of		25
	(A)	0.2 micron		(8)	0.5 micron	
	(C)	1 micron		(D)	5 micron	
61.	The	difference between	n the upper	r limit s	and lower limit of a	a dimension is
	know	n as:		다 다		
	(A)	Basic size		- (B)	Nominal size	
	(C)	Tolerance	8	(D)	Actual size	
62.	Whic	a one of the follo	wing thread	ls is ha	ving smallest inclu	ded angle ?
	(A)	Acme thread		(B)	BSW thread	
	(C)	Buttress thread		(D)	Unified thread	
63.	When	trying to turn a	key into a	lock, th	ne following is appl	ied :
	(A)	Coplanar force		(B)	Lever	
	(C)	Moment		(D)	Couple	
WS (POLY)-	-A	19)		P.T.O.

34.	Cent	tre of gravity of a t	hin hollow cone I	es on the axis at a height of :
	(A)	one-fourth of the	total height above	base
	(B)	one-third of the t	otal height above	base
	(C)	one-half of the to	tal height above b	onse
	(D)	three-eighth of th	e total height abo	we the base
85.	If a	suspended body is s	truck at the centre	e of percussion, then the pressure
	on L	he axis passing thro	ough the point of	suspension will be :
	(A)	Maximum	(B)	Minimum
	(C)	Zero	(D)	Infinity
66.	If th	e velocity of projecti	ion is a m/sec and	the angle of projection is α^{0} , the
	max	imum height of the	projectile on a ho	orizontal plane is :
	(A)	$\frac{u^2\cos^2\alpha}{2g}$	(B)	$\frac{u^2\sin^2\alpha}{2g}$
	(C)	$\frac{u^2 \tan^2 \alpha}{2g}$	(D)	$\frac{u^2\sin^2\alpha}{\mathcal{E}}$
WS	(POLY	()—A	20	

Contract	14/2/2011	SALAND YOUR WEIGHT STREET COUNTY OF							
67.	Wh	ich of the following	feedback	devi	ces can	sense	both	speed	and
	posi	tion ?							
	(A)	Resolver	,	(B)	tachon	neter			
	(C)	Encoder		(D)	All of	these			
68.	Whi	ch of the following non-	contact ins	pect	ion meth	od uses	a higl	n freque	ency
	sour	id wave ?							
	(A)	Radiation		(B)	Relucta	ince			
	(C)	Ultrasonie	(D)	Capaci	tance			
69.	Gant	t chart provides inform	ation abou	it :					
	(A)	Inventory control	. (B)	Product	ion sch	edule	51	
	(C)	Material bundling	- (1	D)	Machin	e utiliza	ation		
102 j	DOVEN NO	V . #	1						
10 (POLY:) —	21					P.T	.0.

70.	Whic	ne maximum power?				
	$\langle A \rangle$	DC motor	*	(B)	Stepper motor	
10	(C)	Hydraulic drive		(D)	Pueumatic drive	
71.	In a	CNC machine tool, enco	der is	used	to sense and control:	
	(A)	Spindle speed		(B)	Spindle position	
	(C)	Table position		(D)	All of these	
72.	Welc	spatter refers to :	6			
	(A)	Welding electrode		(B)	Flux	
	(C)	Filler material		(D)	Welding defect	
73.	The	welding of stainless steel	l is ge	nerally	difficult because of the follow	ving
	reas	on :				
	(A)	Rust formation takes p	olace			
	(B)	High melting temperat	ture o	f stain!	less steel	
	(C)	Formation of exide file	m			
	$\langle \mathbf{D} \rangle$	Formation of chromius	n carl	oide		
WS	(POL	Y)—A	2	2	E 1	

78.	If D is	the	diameter	of Pelton	wheel	and	d is	the	diame	ter	of th	e jet,	then
	numbe	r of	buckets o	on the per	riphery	of a	Pelt	con	wheel	is	equal	to:	

(A)
$$\frac{D}{2d}$$

$$(B) \qquad \frac{D}{2d} + 10$$

(C)
$$\frac{D}{2d} + 15$$

(D)
$$\frac{D}{2d} + 20$$

79. A plate of 600 × 900 mm is to be machined on a shaper. Cutting speed is 6 m/min., return time to cutting time ratio is 1 : 4 and the feed is 2 mm/stroke. Clearance at each end is 75 mm. The time required, in minutes on shaper to complete one cut would be :

(A) 45

(B) 60

(C) 80

(D) 90

80. A point moves with SHM whose period is 4 seconds, if it starts from rest at a distance 4 meters from the centre of its path, then the time it takes, before it has described 2 metres is:

(A) 1/3 second

(B) 2/3 second

(C) 3/4 second

(D) 4/5 second

81.	The	re were two girls of Himachal Pradesh in the Indian Kabbaddi team that
	won	gold medal at 2014 Asian Games ? Who were they ?
	(A)	Puja Thakur and Savita Thakur
	(B)	Savita Thakur and Kavita Thakur
	(C)	Kavita Thakur and Namita Thakur
	(D)	Puja Thakur and Kavita Thakur
82,	Whic	h sector of economy showed the highest increase in Domestic Product.
	in H	imachal Pradesh during 2012-13 ?
	(A)	Primary Sector
	(B)	Community and Personal Services
	(C)	Transport and Trade
	(D)	Finance and Real Estate
S (POLY)	-A 25 P.T.O.

3. Persons of which age group are	eligible for availing Skill Development
Scholarship in Himachal Pradesh	?
(A) 16-35 years	(B) 18-35 years
(C) 25-35 years	(D) 20-30 years
84. At which place is Chandershekh	ar temple in Chamba District of Himachal
Pradesh ?	
(A) Kilar	(B) Tarela
(C) Saho	(D) Chawari
85. Which of the following is not	a herbal/medicinal plant ?
(A) Harar	(B) Bahera
(C) Amla	(D) Sal
WS (POLY)—A	26

86.	In w	hich region of	' Himachal	Prades	h is K	arthi Nati	popular	?
	(A)	Una			(B)	Nalagarh		6
	(C)	Kullu		J.	(D)	Sirmaur		
87.	Whe	n was Social l	Forestry Sci	heme la	aunche	d in Hima	achal Pra	idesh ?
	(A)	1975-76			(B)	1980-81		
							100	
	(C)	1988-89		9	(D)	1996-97		
88.	Who	is the author	of Hindi s	tory U_{8}	ne Ka	ha Tha (उ	उसने कहा	था) ?
	(A)	Lal Chand F	rarthi		₹			
	(B)	Sardar Shobl	ha Singh					
	(C)	Piyush Guler	i					
		:Ā						
	(D)	Chandradhar	Sharma G	uleri				
WS	(POLY)	—A		27				P.

89.	To wh	ich district of Hima	chal Pradesh do	fre	eedom fighters Chaudhary Sher
	Jang,	Sunehri Devi, Mat	ha Ram and De	eep	Ram belong ?
	(A)	Una	*(B)		Kangra
	(C)	Sirmaur	(D)		Chamba
90.	Wha	t is the approximate	breadth of Hima	ach	al Pradesh from South-West end
	of K	angra District to No	orth-East end of	K	Innaur District ?
	(A)	125 kms	(B)	230 kms
	(C)	270 kms	(D)	325 kms
91.	Who	won the 2014 Nol	oel Prize for lite	era	ture ?
	(A)	Mario Vargas Ll	osa (I	3)	Patrick Modiana
	(C)	Herta Muller	(I	0)	Doris Lessing
W	3 (POL	Υ) —Λ	28		

	(A)	Dr. D.S. Kothari	6				
	(B)	Prof. Yash Pal					
			15				
	(C)	Prof. S.S. Bhatnagar			(59)		
1.0	3,650						
	(D)	Prof. Ved Prakash			# 151 #		
93.	Whe	ere was Shakti Devi, who	won the Int	ern	ational Female Pol	ice Peace-k	eeper
	Awa	rd, posted for which sh	e was give	n tl	nis award ?		
	(A)	East Temor	- (B)	Iraq		
	(C)	Iran	0	D)	Afghanistan		
94.	In th	ne 2014-15 Union Budge	t which of	the	following has bee	en promise	ed an
	IIM	?	(7)			lā	
	(A)	Jammu and Kashmir	(H	3)	Himachal Prades	sh	
e,	(C)	Chhattisgarh	(I))	Goa		
1000	DOT TO		12				
no (POLY,	r	29			Р.	T.O.

Who was the first chairman of the UGC ?

					3			
25	(A)	Rabindra Setu		(B)	Hoogly Su	tra		
			9					
	(C)	Banga Setu		(D)	Ganga Sul	ra		
96.	In w	hich district of	Maharashtra	did B	.R. Ambedk	ar start	the	Mahar
			17			63		
	Saty	agraha ?	*	5				
			F1 .					
	CAL .	77.11		(B)	Latur			
	(A)	Kolhapur		(13)	Latur			
	(C)	Ratnagiri		(D)	Amaravati			42
97.	Whic	ch country hosted	the 2014 As	ian Ga	mes ?	19		

				e e Elan				10
	(A)	South Korea		(B)	North Kor	ea		
		15						
	(C)	Taipei		(D)	China			
	W67.5 F				# _			
WS	(POLY	·)—A	30)				
	1000	6			100			

What is the formal name of Howrah bridge ?

	(A)	Nawaz Sharif		(B)	Imran Khan				
	(C)	Bilawai Bhutto		(D)	Asif Ali Zard	lari			
99.	What	does the novel The I	Varrow Roo	id to t	he Deep Sea w	hich won the 20	14		
	Booker prize centre around ?								
	(A)	Adventureus Journe	cy of sailor	durii	ng the Korean	War			
	(B)	Narrow navigation	channel :	in the	e dead sea w	hich often cau	ses		
		accidents	44						
	(C)	Story of a survivor	who escap	ed fro	om the POW (Camp in Vietna	m		
	(D)	(D) Story of a surgeon in a Japanese POW Camp							
100.	To which country does Niels Bohr who invented the atomic structure								
	belor	ng ?							
	(A)	Belgium		(B)	Denmark				
	(C)	Poland		(D)	Germany				
WS ((POLY)—A	31		£:				

Who is the President of Pakistan People's Party ?

98