This question paper contains 4 printed pages]

H.P.A.S. (Main)-2011

STATISTICS

Paper I

Time: 3 Hours Maximum Marks: 150

- Note:— Attempt Question No. 1 which is compulsory and any four questions from the rest, five in all. All questions carry equal marks.
- (a) Define the probability of an event. When are two events called independent?
 - (b) Explain the method of calculation of the median value of a variable from a frequency distribution.
 - (c) For the correlation coefficient γ_{x,y}, bewteen two variables, show that :

$$|\gamma_{x,y}| \leq 1.$$

- 2. (a) For the events A, B, let $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{6}$ and $P(A \cup B) = \frac{1}{2}$. Calculate P(B/A).
 - (b) A discrete variable has the distribution :

$$P(x) = P(X = x) = kx, x = 1, 2, 3, 4.$$

Find the values of k and E(X).

- (a) Define a Poisson distribution. Find its mean and variance.
 - (b) Obtain the moment generating function of a normal distribution.
- (a) Compare the relative merits of the mean, median and mode of a frequency distribution.

(b) Define the kurtosis of a distribution. How is it measured by the coefficient β_2 ? Show that :

$$\beta_2 \geq 1$$
.

- (a) How is association between two attributes measured? Illustrate by an example.
 - (b) Explain the rank correlation coefficient and derive an expression for it.
- (a) Define orthogonal polynomials and mention its use.
 - (b) Define a χ²-statistic and explain its use in testing the goodness of fit of a distribution to given data.
- (a) Define the consistency and unbiasedness of an estimator. Illustrate by an example that a consistent estimator need not be unbiased.

- (b) What are best unbiased linear estimators? Give an example.
- (a) Given a random sample (x₁, x₂,,x_n) from a rectangular distribution;

$$f(x,\ \theta)=\frac{1}{b-a};\ a\le x\le b$$

obtain the maximum likelihood etimators of 'a' and 'b'.

(b) Explain the method of moments for estimation of a parameter. Give an example.