This question paper contains 4+2 printed pages]

HPAS (Main)-2012

ELECTRICAL ENGINEERING

Paper I

Time : 3 Hours

Maximum Marks: 150

Note: — Attempt Five questions in all, taking at least one question from each part.

Part A

 (a) For the circuit shown in Fig. 1, find out the expression of voltage V(t) across 10 μF capacitor. 15

Fig. 1

(b) Find the Thevenin's equivalent of the circuit shown in Fig. 2.

Fig. 2

- (a) Consider the signal X(t) = e^{-at} u(t), a > 0, where u(t) is the unit step function. Find the Fourier transform of X(t) and sketch its amplitude spectra.
 - (b) State and prove 'Maximum Power Transfer
 Theorem' for a.c. circuits. 8

(c) Obtain the Cauer realizations of the driving point admittance:

$$y(s) = \frac{s(s^2 + 9)}{(s^2 + 4)(s^2 + 25)}.$$

(d) What are circuit elements? Discuss their classification.

Part B

- (a) Derive the expression of capacitance of a coaxial cable using Laplace's equation.
 - (b) State and prove boundary conditions for an electromagnetic wave propagating through the medium.
- (a) A digital voltmeter has a read out range from
 to 9999 counts. Determine the resolution of
 the voltmeter in volts when full scale reading
 is 9.999 V.

- (b) A voltmeter reading 70 V on its 100 V range and an ammeter reading on its 150 mA range are used to determine the power dissipated in a resistor. Both there instruments are guaranted to be accurate within ±1.5% at full scale deflection. Determine the limiting error of the power.
- (c) Calculate the unknown inductance and resistance measured by Hay's bridge. The bridge elements at balancing condition are :

 R_1 = 5.1 k Ω , R_2 = 7.9 k Ω , R_3 = 790 Ω and C_1 = 2 pF, the supply angular frequency is 1000 rad/sec.

(d) What are the various methods of measurement of power in 3-phase circuits? Discuss these in detail.

Part C

5. (a)	(a)	What are multivibrators? What are the various
		types of multivibrators? Discuss the working and
		application of each.

- (b) Describe the principle of oscillator. Explain in detail, phase shift oscillator and Wein bridge oscillator, clearly highlighting their differences.
- 6. (a) Discuss CMOS technology and mention its merits and demerits.
 - (b) Explain the race-round condition in a JK flipflop. How is it overcome in a master-slave flipflop?
 - (c) Discuss in detail, at least five applications of diode.
 10
 - (d) Differentiate between BJT and FET. 5

Part C

5. (a)	What are multivibrators ? What are the various
	types of multivibrators? Discuss the working and
	application of each.

- (b) Describe the principle of oscillator. Explain in detail, phase shift oscillator and Wein bridge oscillator, clearly highlighting their differences.
- (a) Discuss CMOS technology and mention its merits and demerits.
 - (b) Explain the race-round condition in a JK flipflop. How is it overcome in a master-slave flipflop?
 - (c) Discuss in detail, at least five applications of diode.
 - (d) Differentiate between BJT and FET. 5