[Maximum Marks: 100

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

TEST BOOKLET

AE(C)MPP-PPCL/2015

Time	All questions carry equal marks. [Maximum Marks : 100
_	INSTRUCTIONS
l.	Immediately after the commencement of the examination, you should check that test booklet does not have any unprinted or torn or missing pages or items, etc. If so, get it replaced
	by a complete test booklet.
2.	Write your Roll Numbersonly in the box provided alongside. Do not write anything else on the Test Booklet.
3.	This Test Booklet contains 100 items (questions). Each item comprises four responses (answers). Choose only one response for each item which you consider the best.
4.	After the candidate has read each item in the Test Booklet and decided which of the given responses is correct or the best, he has to mark the circle containing the letter of the selected response by blackening it completely with Black or Blue ball pen. In the following example, response "C" is so marked:
	(A) (B) (D)
5.	Do the encoding carefully as given in the illustrations. While encoding your particulars or marking the answers on answer sheet, you should blacken the circle corresponding to the choice in full and no part of the circle should be left unfilled.
6.	You have to mark all your responses ONLY on the ANSWER SHEET separately given according to INSTRUCTIONS FOR CANDIDATES' already supplied to you. Responses marked on the Test Booklet or in any paper other than the answer sheet shall not be examined
7.	All items carry equal marks. Attempt all items. Your total marks will depend only or the number of correct responses marked by you in the Answer Sheet. There will be no negative marking.
8.	Before you proceed to mark responses in the Answer Sheet fill in the particulars in the front portion of the Answer Sheet as per the instructions sent to you.
9.	After you have completed the test, hand over the Answer Sheet to the Invigilator.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

A.E.(C)MPP-PPCL/2015

Time Allowed: 2 Hours]

[Maximum Marks: 100

1. A weight of 500 π Newton hangs from a cable of length of 10 m, diameter 2 cm and E = 200 GPa, then the elongation of the cable is :

(A) 0.05 cm

(B) 0.025 cm

(C) 1/π

(D) 1 cm

2. The Bending Moment Diagram for a cantilever beam subjected to moment at free end of beam will be :

(A) Triangle

(B) Rectangle

(C) Parabola

(D) Elliptical

3. What will be the torsional stiffness of a shaft of length L and shear modulus
G if it is subjected to a twisting moment M_t and an angle of twist φ?

(A) $\frac{M_tL}{G}$

(B) $\frac{\phi}{M_{*}}$

(C) $\frac{M_t}{\phi}$

(D) $\frac{M_t L}{\phi}$

AE(C)MPP-PPCL/2015

4.	In a plane stress case, if the	ne principal str	resses are 130	MPa and 30 MPa,						
	then the magnitude of the	maximum she	ar stress will	be:						
	(A) 40 MPa	(B)	50 MPa							
	(C) 60 MPa	(D)	95 MPa							
5.	Two bars of different mater	rials are of san	ne size and a	re subjected to same						
	tensile forces. If the bars h	nave unit elong	ations in the	ratio of $4:7$, then						
	the ratio of modulli of elas	ticity of these	two material	s is:						
	(A) 16:49	(B)	4:7							
	(C) 4:17	(D)	7:4							
6.	Which one of the following	is the correct re	elationship be	tween the maximum						
	shear stress and average shear stress over the cross-section of a thin circular									
	tube ?									
	(A) top edge of the section	n								
	(B) C.G. of the section									
	(C) mid-point of the dept	h of section								
	(D) bottom edge of the se	ection								
AE(C	C)MPP-PPCL/2015	3		P.T.O.						

- 7. If the length of a cantilever beam carrying uniformly distributed load throughout the span is doubled, the deflection at the free end will become :
 - (A) two times

(B) four times

(C) eight times

- (D) sixteen times
- 8. A cube having each side of length a, is constrained in all directions and is heated uniformly so that the temperature is raised to T°C. If α is the thermal coefficient of expansion of the cube material and E the modulus of elasticity, the stress developed in the cube would be :
 - (A) $\frac{\alpha TE}{\mu}$

(B) $\frac{\alpha TE}{2\mu}$

(C) $\frac{\alpha TE}{(1-2u)}$

- (D) $\frac{\alpha TE}{(1 + 2\mu)}$
- 9. Which one of the following relationships is correct if one of the principal stress is zero at a point in two-dimensional stress system and the normal stress on two mutually perpendicular planes are σ_x and σ_y (both like) and the shear stress is τ_{xy}?

(A)
$$\tau_{xy}^2 = \sigma_x \sigma_y$$

(B)
$$\tau_{xy} = \sqrt[3]{\sigma_x \sigma_y}$$

(C)
$$\tau_{xy}^2 = 2\sigma_x\sigma_y$$

(D)
$$\tau_{xy} = \frac{\sigma_x + \sigma_y}{\sigma_x - \sigma_y}$$

10. Match List-I (property) with List-II (characteristics) and select the correct answer using the codes given below the lists:

List I

List II

(a) Fatigue

(1) Material continues to deform with time under sustained loading

(b) Creep

(2) Decreased resistance of material to repeated reversals of stress

(c) Plasticity

(3) Material has a high probability of not failing under reversals of stress of magnitude below this level

(d) Endurance limit

(4) Material continues to deform without any further increase in stress

Codes :

(a)

(c)

(d)

(A) (2)

(1)

(4)

(3)

(B) (2)

(1)

(3)

(4)

(C) (1)

(2)

(4)

(3)

(D) (1)

(2)

(3)

(4)

- 11. Which one of the following corresponds to the shear force at a section in the conjugate beam ?
 - (A) slope at that section in the real beam
 - (B) slope multiplied by EI at that section in real beam
 - (C) deflection multiplied by EI at that section in real beam
 - (D) shear force multiplied by EI at that section in the real beam
- 12. What is the stiffness factor at the near end of a beam of length 'L' with far end fixed ?
 - $(A) = \frac{EI}{L}$

(B) $\frac{2EI}{L}$

(C) $\frac{3EI}{L}$

- (D) $\frac{4El}{L}$
- 13. The numbers of plastic hinges that are required to cause the overall total collapse of a structure is:
 - (A) one less than the order of static indeterminacy
 - (B) equal to the order of static indeterminacy
 - (C) one more than the order of static indeterminacy
 - (D) not determinable

14.	If a single concentrated	load W is moving	on a symmetrical	three hinged				
	parabolic arch of span L,	parabolic arch of span L, what is the position of the maximum sagging moment						
	from its ends?							

(A) 0.105 L

(B) 0.211 L

(C) 0.250 L

(D) 0.500 L

15. A beam has the same section throughout its length with $I = I \times 10^8 \text{ mm}^4$. It is subjected to a uniform B.M. = 40 kNm and $E = 2 \times 10^5 \text{ N/mm}^2$. What is the radius of curvature of the circle into which the beam will bend in the form of an area of a circle ?

(A) 1000 m

(B) 500 m

(C) 400 m

(D) 350 m

16. If the modular ratio is 'm', steel ratio is 'r', what will be the critical neutral axis constant 'k'?

(A) $\frac{r}{m}$

(B) $\frac{m-r}{m}$

(C) $\frac{m}{r}$

(D) $\frac{m}{m+r}$

What for high grade concrete is used in pre-stressed concrete ? Controlling the pre-stress loss Having concrete of low ductility (B) Having concrete of high Brittleness Having low creep Under which one of the following conditions the doubly reinforced beams are 18. recommended? (A) the depth of the beam is restricted the breadth of the beam is restricted (C) both depth and breadth are restricted . (D) the shear is high What will be the position of critical section for computing design shear force 19. in a reinforced concrete beam when the supports exert a compressive reaction ? (A) at the centre of support at the face of support (C) at a distance of half of effective depth from the face of support (D) at a distance of effective depth from the face of support AE(C)MPP-PPCL/2015

- 24	
20.	What will be the percentage area of the steel required in a singly reinforced
	beam if the permissible compressive and tensile stresses are 5 N/mm ² and
	140 N/mm ² respectively and the modular ratio is 18.67 ?
	(A) 0.51 (B) 0.71
	(C) 0.81 (D) 0.91
21.	At which condition the splicing of the reinforcement bars in R.C.C. beams
6	is required ?
*.	(A) if shear force is zero
	(B) if bending moment is less than half the maximum B.M. on the beam
	(C) if bending moment is more than half the maximum B.M. on the
	beam
	(D) if bending moment is zero
22.	The plastic modulus of a section is 5×10^{-4} m ³ . Its shape factor is 1.2 and
	the plastic moment capacity is 120 kNm, what is the value of the yield stress
	of the material ?
	(A) 100 N/mm ² (B) 200 N/mm ²
4	(C) 240 N/mm ² (D) 288 N/mm ² P.T.O.
Al	E(C)MPP-PPCL/2015 9

23. What will be the maximum bending moment on a square footing of side 'b' corresponding to a net upward pressure 'p' if A square column of side 'a' is founded on the square footing?

(A)
$$\frac{pb(b-a)^2}{8}$$

(C) $\frac{pb(b-a)}{8}$

(B)
$$\frac{pb(b+a)^2}{8}$$

(D) $\frac{pb(b+a)}{8}$

- 24. In the limit state design as per IS 456 : 2000, the shape of the compressive stress block of concrete is :
 - (A) Rectangular
 - (B) Parabolic
 - (C) Combination of Rectangular and Parabola
 - (D) Triangular
- 25. The column ABCD is subjected to an eccentric compressive load at point Z as shown in figure. If the stresses at point A are as follows:
 due to direct compression = 400 N/mm²

due to bending about x-axis = 1200 N/mm^2

due to bending about y-axis = 800 N/mm²

Then the compressive stress at point will be

(A) 2400 N/mm²

(B) 2000 N/mm²

(C) 1200 N/mm²

(D) 800 N/mm²

-	
26.	As per the Unwin's formula, if t is the thickness of plate in mm, what will
	be the nominal diameter of the rivet ?
	(A) $d = 1.91 \sqrt{t}$ (B) $d = 1.91 t^2$
	(C) $d = 1.91 t^{2/3}$ (D) $d = 1.91t^{1/4}$
27.	The limit of proportionality of a certain steel sample is 300 MPa in simple
	tension. It is subjected to principal stresses of 150 MPa (tensile), 60 MPa
	(tensile) and 30 MPa (tensile). According to the maximum principal stress
- John	theory, what will be the factor of safety in this case ?
	(A) 10 (B) 5
	read adultion of the same of t
	(C) 4 (D) 2
	and the second s
28.	What will be the live load for a sloping roof with slope 15° if access is not
	provided to roof?
	(A) 0.65 kN/m^2 (B) 0.85 kN/m^2
	(C) 1.05 kN/m^2 (D) 1.25 kN/m^2
AE(C)MPP-PPCL/2015 11 P.T.O.

What is the most critical consideration in the design of rolled steel columns 29. carrying axial loads? (A) percent elongation at yield and the net cross-sectional area (B) critical bending strength and axial yield strength of the material (C) buckling strength based on the net area of the section and per cent elongation at ultimate load compressive strength based on slenderness ratio and gross cross-sectional area of the member A steel column in a multi-storied building carries an axial load of 125 N. It is built up of 2 ISMC 350 channels connected by lacing. What will be the load carried by the lacing? 12.500 N (B) 12.250 N (A) (D) Zero 3.125 N AE(C)MPP-PPCL/2015

12

31. Match List I with List II and select the correct answer using the codes given below lists:

(Assume y_n = Normal depth; y_c = critical depth and y = depth of gradually varied flow)

List I

(Flow regimes for gradually (Type of Gradually varied varied flow) flow profile)

$$(a) \quad y_c > y_n > y$$

$$(b) \quad y_c < y_n < y$$

$$(c) \quad y_n > y > y_c$$

$$(d) \quad y > y_c > y_n$$

List II

Codes:

- (b)
- (c)
- (d)

(4)

(2)

(2)

(5)

- (2)
- (3)
- (B) (3)
- (4)
- (5)
- (C) (3)
- (2)
- (4)
- (D) (5)
- (4)
- (3)

- 32. Which of the following statements is false regarding the relation for Specificspeed, Ns = $\frac{N\sqrt{O}}{H^{5.4}}$?
 - (A) The relation is valid for both impulse as well as reaction turbines
 - (B) The value of specific speed depends on the system of units
 - (C) The value of specific speed will be lower than that for Kaplan turbine for any system of units
 - (D) The dimensions of specific speed are [FLT⁻¹]
 - 33. Which one of the following equations represents the free surface profile of a liquid, partially filled in a cylindrical container when it is subjected to uniform rotation? Assume that the coordinate axes (z, r) have their origin at the centre of the bottom of container with 'h₀' as the central depth of liquid and 'ω' be the angular velocity?

(A)
$$Z = \frac{r\omega^2}{2g} + h_0$$

(B)
$$Z = \frac{r^2 \omega^2}{2g} + h_0$$

(C)
$$Z = \frac{r^2\omega}{2g} + h_0$$

(D)
$$Z = \frac{r^2\omega^2}{g} + h_0$$

(STEIN) 2210	***	1 1 2 to 1 to 1	to mann volocity V is at a	distan
34.	If the point at which loc	al velocity v is equal	to mean velocity V is at a	CHS COLL
	$k{\bf R}$ from the centre of	circular pipe having	radius R, what will be the	he val
	of K?			
	(A) 0.707	(B)	0.5	
	(C) 1.414	(D)	zero	
35.	If a nozzle is so shape	ed that the velocity	of flow along centre line	chang
	from 1.5 m/sec to 15 m/	sec in a distance of 0).375 m, what will be the m	agnitu
	of convective accelera	tion at the beginning	ng ?	
	(A) 24 m/s ²	(B)	42 m/s^2	
	(C) 54 m/s ²	(D)	74 m/s^2	
36.	A laminar flow is takin	ng place in a pipe of c	liameter 20 cm. If the mea	n velo
	of flow in the pipe is	0.75 m/sec, what wi	ill be the velocity at 4 cm	from
	wall of the pipe ?			
	(A) 0.96 m/s	(B)	1.12 m/s	
	(C) 1.96 m/s	(D)	2.12 m/s	
AE(C)MPP-PPCL/2015	15		P.7

- 37. If a sphere of diameter 0.5 cm falls in castor oil of kinematic viscosity 10 stokes, with a terminal velocity of 1.0 cm/sec, what will be the coefficient of drag on the sphere?
 - (A) less than 5

(B) 240

(C) 480

- (D) 500
- 38. What will be the local drag coefficient for laminar boundary layer as per Blacius exact analytical solution ?
 - (A) $\frac{0.059}{\left(R_{e_x}\right)^{\frac{1}{2}}}$

(B) $\frac{0.074}{\left(R_{e_x}\right)^{\frac{1}{4}}}$

(C) $\frac{0.664}{\left(R_{e_x}\right)^{\frac{1}{2}}}$

- (D) $\frac{1.328}{(R_{e_x})^{\frac{1}{2}}}$
- 39. The head loss in a pipe of diameter 'D' carrying oil at a flow rate 'Q' over a distance 'l' is 'h_L'. If the pipe is replaced by another pipe with half the diameter, all other things remaining the same, what will be the head loss in this case ?
 - (A) 2h_L

(B) 4h_L

(C) 6h_L

(D) 8h_L

- 40. A long prismatic channel ends in an abrupt drop in bed. Which one of the following statements explains the water surface profile on the upstream of the drop for an initially sub-critical flow?
 - (A) water surface profile lies completely below the critical depth line
 - (B) water surface profile lies between critical and normal depth lines
 - (C) water surface profile starts from critical depth lines and joins the normal depth line asymptotically
 - (D) water surface profile lies completely above the normal depth line
- 41. Under the same conditions, which one of the following is most suitable for using Isohyetal method to evaluate mean aerial depth of rainfall?
 - (A) Plain country
 - (B) gently sloping basin
 - (C) undulating country
 - (D) a place where the precipitation includes snow-melt

42.	If th	he nor	mal an	nual p	recipita	ation a	t sta	ation X, A, B and C are 700 mm,			
	1000 mm, 900 mm and 800 mm respectively and the storm precipitation at										
	three stations A, B and C were 100 mm, 90 mm and 80 mm respectively,										
	wha	t will	be the	storm	precip	itation	for	station X ?			
	(A)	70 m	ım —				(B)	80 mm			
	(C)	90 m	ım				(D)	105 mm			
43.	Mat	ch Lis	t I with	List l	I and s	select tl	he co	rrect answer using the codes given			
	belo	w in t	he list	s :							
		List	1					List II			
	(a)	Unco	nfined	aquife	r		(1)	Insignificant yield			
	(b)	Confi	ined ac	quifer			(2)	Impermeable of flow of water			
	(c)	Aqui	tard				(3)	Water table of aquifer			
	(d)	Aqui	clude				(4)	Artesian aquifer			
	Cod	les :									
		(a)	(b)	(c)	(d)						
	(A)	(1)	(2)	(3)	(4)						
	(B)	(2)	(4)	(1)	(3)						
	(C)	(3)	(4)	(1)	(2)						
	(D)	(4)	(3)	(1)	(2)						
AE(C	C)MPI	P-PPC	L/2015			18					

-4							
44.	A 6-hour storm has 6 cm of rainfall and the resulting runoff was 3 cm. If						
	$\boldsymbol{\phi}$ index remains at the same value, which one of the following is the runoff						
	due to 12 cm of rainfall in 9 hours in the catchment?						
	(A) 4.5 cm (B) 6.0 cm						
	(C) 7.5 cm (D) 9.0 cm						
45.	What is the use of Blaney-Criddle equation ?						
	(A) to determine the runoff coefficient						
	(B) to estimate the evapo-transpiration losses						
	(C) to obtain depth of evaporation from a water surface						
	(D) to determine the stream-flow from a catchment						
46.	If a river in alluvial plain has a dominant discharge of 2025 m ³ /sec, what						
	should be the waterway for a bridge on the river ?						
	(A) 285 m (B) 304 m						
	(C) 405 m (D) 215 m						
AE(C	C)MPP-PPCL/2015 19 P.T.O.						

47.	Why is it required to provide a cross regulator on a main canal?								
	(A) to let maximum silt be carried into the branch canal								
	(B) to minimize the amount of silt entering the branch canal								
	(C) to minimize the evaporation losses								
	(D) to carry the canal across the drain								
48.	An irrigation channel is carrying 3.0 m ³ /sec of water to a culturable comman								
	area of 1500 ha with an intensity of irrigation equal to 50%. If the base perio								
	of crop is 140 days, what will be delta for the crop?								
	(A) 2.419 m (B) 1.613 m								
	(C) 0.806 m (D) 4.838 m								
49.	A sample of soil has the following properties:								
	Liquid limit = 45%, plastic limit = 25%, shrinkage limit = 17%, natural moistur								
	content = 30%.								
	The consistency index of soil is :								
	(A) 15/20 (B) 13/20								
	(C) 8/20 (D) 5/20								
AE(C	C)MPP-PPCL/2015 20								

50.	A fully saturated clay specimen is placed in a consolidometer and subjected									
	to a loading of 200 kN/m ² . After a period of time it was found that the average									
	pore pressure in the s	pecimen was 70	kN/n	n^2 . The p	ercentage	of consoli	dation			
	reached by then was	F I								
	(A) 70		(B)	65						
	(C) 35		(D)	29						
51.	According to Terzagh	i theory, what i	s the v	alue of c	oefficient (N _c) for a	angle			
	of shear resistance (φ) = 0 ?								
	(A) 9.14		(B)	5.70						
	(C) 5.14		(D)	5.50						
52.	For a clay slope of h	eight 20 m, the	stabi	lity num	ber is 0.05	5, γ = 25	kN/m³,			
	and $c = 30 \text{ kN/m}^2$, th	ne critical heigh	nt of sl	ope is :						
	(A) 30 m		(B)	20 m						
	(C) 24 m		(D)	26 m						
AE(C	C)MPP-PPCL/2015	2	1				P.T.O.			

In a	cohesive so	oil, the settle	ement of a	30	cm plate i	n a plate	load test is
2 cm,	then the s	settlement of	a square f	ooti	ng of 90 cm	side und	ler the same
load	intensity w	rill be:					
(A)	2 cm		a	3)	4 cm		
(C)	6 cm		a	0)	4.5 cm		
A fill	l having a	volume of 1	5000 m ³ is	to	be construe	cted at a	void ratio of
0.5.	The borrow	pit solid has	s a void rat	io o	f 1.5. The	volume of	soil required
(in c	ubic meter	s) to be exca	avated fron	n th	e borrow p	it will be	:
(A)	18750		(B)	20000		
(C)	25000			D)	75000		
Wha	t will be t	he ratio of p	passive to a	ctiv	e lateral e	arth pres	sure for san
havi	ng an ang	le of interna	d friction o	f 30	0° ?		
(A)	1			(B)	3		
(C)	6			(D)	9		
C)MPI	P-PPCL/201	15	22				
		E.,					. 4
	2 cm, load (A) (C) A fill (A) (C) (M) (C) What havi (A) (C)	2 cm, then the solution load intensity were selected (A) 2 cm (C) 6 cm A fill having a constant of the const	2 cm, then the settlement of load intensity will be: (A) 2 cm (C) 6 cm A fill having a volume of 1. 0.5. The borrow pit solid have (in cubic meters) to be exceed. (A) 18750 (C) 25000 What will be the ratio of pure having an angle of internations. (A) 1	2 cm, then the settlement of a square foliated intensity will be: (A) 2 cm (C) 6 cm (D) A fill having a volume of 15000 m³ is 0.5. The borrow pit solid has a void rate (in cubic meters) to be excavated from (A) 18750 (C) 25000 (D) 4 cm (C) 25000	2 cm, then the settlement of a square footing load intensity will be: (A) 2 cm (B) (C) 6 cm (D) A fill having a volume of 15000 m³ is to 0.5. The borrow pit solid has a void ratio of (in cubic meters) to be excavated from the (A) 18750 (B) (C) 25000 (D) What will be the ratio of passive to active having an angle of internal friction of 30 (A) 1 (B) (C) 6 (D)	2 cm, then the settlement of a square footing of 90 cm load intensity will be: (A) 2 cm (B) 4 cm (C) 6 cm (D) 4.5 cm A fill having a volume of 15000 m³ is to be constructed on the borrow pit solid has a void ratio of 1.5. The volume construction of the borrow pit solid has a void ratio of 1.5. The volume construction of the borrow pit solid has a void ratio of 1.5. The volume construction c	(A) 2 cm (B) 4 cm (C) 6 cm (D) 4.5 cm A fill having a volume of 15000 m³ is to be constructed at a 0.5. The borrow pit solid has a void ratio of 1.5. The volume of (in cubic meters) to be excavated from the borrow pit will be (A) 18750 (B) 20000 (C) 25000 (D) 75000 What will be the ratio of passive to active lateral earth preshaving an angle of internal friction of 30°? (A) 1 (B) 3 (C) 6 (D) 9

56.	Consider the following statements:	
	The Standard Penetration Test (SPT) in soil is the most commonly used field	
	test. SPT is used to determine:	
	(1) Consistency of clay.	
	(2) Un-drained shear strength of soft sensitive clays.	
	(3) Relative density of sands.	
	(4) Drained shear strength of fine loose sand.	

A cylinder of clayey soil fails under an axial vertical stress of 20 t/m² when

23

horizontal. The cohesion of the soil sample will be :

it is laterally unconfined. The failure plane makes an angle of 45° with the

(B) 20 t/m²

(D) 28.28 t/m²

Of these statements:

(1) and (2) are correct

(2) and (4) are correct

(C) (1) and (3) are correct

(D) (3) and (4) are correct

(A) 10 t/m²

AE(C)MPP-PPCL/2015

(C) 14.14 t/m²

58.	For a soil	void ratio :	= 0.7 and	specific		of solids			
	to cause	quick sand	over a	column	of 5 m	high san	d will	be:	

59. If s is the shear strength, c and φ are shear strength parameters, and σ_n is the normal stress at failure, then Coulomb's equation for shear strength of the soil can be represented by :

(A)
$$c = s + \sigma_n \tan \phi$$

(B)
$$c = s - \sigma_n \tan \phi$$

(C)
$$s = \sigma_n + c \tan \phi$$

(D)
$$s = c - \sigma_n \tan \phi$$

60. The capacity of a "28 S type" concrete mixer is 0.8 m³. For mixing one cubic meter of concrete, the quantity of cement required is 5.5 bags. In order to avoid fractional usage of cement bags, the volume of concrete (in m³) to be mixed per batch will nearly be:

61.	The	network rules are common to all activity-on-arrow networking systems.							
	The	The use of computers for making computations may impose certain rules. Which							
	of th	ne following basic rules of network logic are correct ?							
	(1)	Before an activity may begin, all the activities preceding it must be							
		complete,							
	(2)	Any two events may be directly connected by no more than one activity.							
	(3)	Event numbers must not be duplicated in a network.							
	Sele	ct the correct answer using the codes given below :							
	Cod	les:							
	(A)	(1) and (2) (B) (2) and (3)							
	(C)	(1) and (3) (D) (1), (2) and (3)							
62.	Con	sider the following pairs:							
	(1)	Difference between total float and free float : Interfering float							
	(2)	Sum of independent float and tail slack : Free float							
	(3)	Sum of independent float, tail slack and interfering float : Total float							
	Whi	ich of these pairs are correctly matched ?							
	(A)	(1), (2) and (3) (B) (1) and (2)							
	(C)	(2) and (3) (D) (1) and (3)							
AE(C	C)MPI	P-PPCL/2015 25 P.T.O.							

63. Match List I with List II and select the correct answer using the codes given below in the lists:

List I

List II

(Types of Road)

(Recommended Camber)

- (a) Water bound macadam
- (1) 1 in 72
- (b) Bituminous Concrete
- (2) 1 in 60
- (c) Earth road (untreated)
- (3) 1 in 48

(d) Rigid pavement

(4) 1 in 25

Codes:

- (a) (b) (c) (d)
- (A) (1) (4) (3) (2)
- (B) (4) (3) (2) (1)
- (C) (2) (3) (1) (4)
- (D) (3) (1) (4) (2)

	the	design speed is in	creased by :						
	(A)	8 kmph	(B)	12 kmph	1				
	(C)	16 kmph	(D)	20 kmpł	1				
65.	A ve	hicle was stopped	in two seconds by f	ully jamn	ing the brakes.	The skid			
	mar	ks measured 9.8	meters. The average	ge skid r	esistance coeffi	cient will			
	be:								
	(A)	0.70	(B)	0.50					
	(C)	0.40	(D)	0.25					
66.	For	a two-lane rural h	ighway, the (I.R.C.)	have reco	mmended that	the design			
	volu	volume per day should be :							
	(A)	10,000 passenger	cars per day with	a peak he	our volume of 1	2% of the			
		average daily vo	lume						
	(B)	5,000 passenger	cars per day with	a peak ho	our volume of 1	0% of the			
		average daily vo	lume						
	(C)	9,000 passenger	cars per day with per	ak hour vo	lume of 8% of tl	ne average			
ŧ		daily volume							
	(D)	1000 passenger c	ars per day with pea	k hour vol	ume of 10% of t	he average			
		daily volume							
A TO	CMP	P PPCI /2015	27			P.T.O.			

To calculate the minimum value of ruling radius of horizontal curves in plains

100au		tetion of concrete nevement of thickn	229					
67.		e construction of concrete pavement of thickn						
	28 cm. Poisson's ratio of the conc	rete is 0.15. If the modulus of subgrade react	ion					
	is 8 kg/cm ³ , the radius of rela	tive stiffness would be :						
	(A) 93.186 cm	(B) 52.15 cm						
	(C) 98.15 cm	(D) 111.186 cm						
68.	In a two layer system, when	$\frac{\mathbb{E}_1}{\mathbb{E}_2}$ changes from 1 to 100, the vertical str	ress					
	will be changing from	.% to % of the applied pressure	e as					
	per Boussinesq's analogy.							
	(A) 100, 1	(B) 88, 6						
	(C) 6, 88	(D) 68, 8						
69.	Which of the following are claim	ned as advantageous in respect of aerobic slu	idge					
	digestion as compared to ana	erobic sludge digestion ?						
	(1) Lower BOD concentration in supernatant liquor.							
	(2) Production of a sludge with excellent dewatering propensity.							
	(3) Greater production of m	(3) Greater production of methane.						
	(4) Lesser operating cost.							
	(5) Lesser capital cost.							
	Select the correct answer usi	ng the codes given below:						
	(A) (1), (2) and (4)	(B) (2), (3), (4) and (5)						
	(C) (3), (4) and (5)	(D) (1), (2) and (5)						
AE((C)MPP-PPCL/2015	28						

0.		locculator of a water treatment p	
	temporal mean velocity gradien	t G needs to be of the order of :	
	(A) 5 to 10 s ⁻¹	(B) $20 \text{ to } 80 \text{ s}^{-1}$	
	(C) 100 to 200 s ⁻¹	(D) $250 \text{ to } 350 \text{ s}^{-1}$	
71.	If the period of incubation at 3	7°C is 15 days in the relative stab	sility test
	on sewage, the relative stabilit	is:	
	(A) 99%	(B) 99.9%	
	(C) 99.99%	(D) 100%	
72.	The ratio of flowing through po	eriod to detention period in a sedir	nentation
	tank is called:		
	(A) surface loading	(B) settling velocity	
	(C) theoretical efficiency	(D) displacement efficiency	
73.	The end product formed, after	separation and anaerobic bacterial	digestion
	of organic municipal solid was	tes, is called:	
	(A) compost	(B) humus	
	(C) leachate	(D) ashes	
A 777	C)MPP-PPCL/2015	29	P.T.O.

74.		The p	oipe mai	ins ca	rrying	water fro	m the so	surce to the reservoir are desig	ned
		for th	ne:						
		(A)	maximu	ım da	ily dra	aft			
		(B)	average	daily	draft				
		(C)	maxim	ım ho	ourly d	raft of th	ne maxin	num day	
		(D)	maxim	um w	eekly o	iraft			
75.		Mate	h List I	with	List II	and sele	ct the co	rrect answer using the codes g	iven
		belov	w in the	lists	:				
			Li	st I				List II	
		(7	Freatm	ent v	nits)			(Detention time)	
		(a)	Grit ch	ambe	r		(1)	Six hours	
		(b)	Primar	y sed	imenta	ition	(2)	Two minutes	
		(c)	Activat	ted sl	udge		(3)	Two hours	
		(d)	Sludge	dige	stion		(4)	Twenty five days	
		Cod	les :	. 6					
			(a)	(b)	(c)	(d)			
		(A)	(3)	(1)	(4)	(2)			
		(B)	(2)	(3)	(1)	(4)			
		(C)	(2)	(1)	(3)	(4)			
		(D)	(1)	(2)	(3)	(4)			
AF	3)2	C)MP	P-PPCL	/2015			30		

76. Match List I with List II and select the correct answer using the codes given below in the lists:

List II List I Nitrate Proportional weir (1) (a) Slow sand filters Mottled teeth (b) Grit chambers (3)Muffle furnace (c) Volatile solids (4) Methaemolobinemia (d) Fluoride (5) Schmutzdecke (e) Codes: (e) (b) (c) (d)(a) (1) (3)(4) (5)(A) (2) (4) (1) (3)(5) (B) (2) (1) (2)(5)(4) (2)(3)(5)AE(C)MPP-PPCL/2015 31

P.T.O.

				200
77.	The	efficiency of disinfection by chlorine, in wa	ter treatment	, increases by:
	(A)	decrease in time of contact		
		*		
	(B)	decrease in temperature of water		
	(C)	increase in temperature of water		
	(D)	none of the above .		
78.	The	chlorine demand of a water sample was four	nd to be 0.2 mg	/l. The amount
	of b	oleaching powder containing 30% available	chlorine to be	added to treat
	1 li	ter of such a water sample is:		
	(A)	0.67 mg		
	(B)	0.06 mg		
	(C)	1.33 mg		
	(D)	0.14 mg		
AE	(C)MP	P-PPCL/2015 32		

79.	If a sewer drain carryi	ng a discharge	of 2 cumecs,	outfalls into a river	carrying
	a discharge of 10 cun	necs, and havin	ng DO equa	l to 8.4 mg/l, the r	esultant
	DO of the mixture w	ill be equal to	:		
	(A) 5.0 mg/l		(B) 7.0 m	g/l	
	(C) 10.5 mg/l		(D) 15.0 r	mg/l	
80.	For a colony of 10,000 of applied sewage of 3	persons havin			
	area of an oxidation	pond required	for treating	the sewage of the	colony
	is:				
	(A) 0.2 hectare	4.6 (4.6)	(B) 1 hect	are	
	(C) 2 hectares		(D) 6 hect	ares	
81.	In which region of Ma	andi district of	H.P is Shil	kari Devi temple ?	
	(A) Dharampur		(B) Jogind	er Nagar	
	(C) Drang		(D) Karsog	·	
AE(C	C)MPP-PPCL/2015	33			P.T.O.

82.	To w	hich god is Nawa	ala festival dedicat	ec	1 ?	
	(A)	Lord Rama	(B)		Lord Krishna	
		·	*			
	(C)	Lord Shiva	(D)	Š	Lord Vishnu	
83.	Whe	re are Ski slopes	in Himachal Prac	le:	sh ?	
	(A)	Salogra	(B)	Salooni	
			*			
	(C)	Sultanpur	(D)	Solang	
	(0)					
84.	Who	is the author o	f Antiquities of Ch	aı	nba State ?	
	(A)	J.B. Lyall	(B	3)	C.F. Massy	
	(C)	G.T. Vigne	Œ))	J.Ph. Vogel	
85.	Wh	ich Raja of Mandi	handed over the adı	ni	nistration of his	state to his nephew
	Bal	bir Sen ?				
	(A)	Ishwari Sen		B)	Zalim Sen	
	(C)	Bijai Sen		D)	Bhawani Sen	Denny
AE	(C)MF	P-PPCL/2015	34			

86.	Whi	ch princely state	witne	ssed Pail	anta i	witation and	and 1049 /	D 2
					iota a	igitation arot	md 1542 F	L.D. ?
	(A)	Jubbal			(B)	Bushahar		
	(C)	Sirmaur		(9)	(D)	Baghat		
87.	Besi	des Chini Tehsil	of Mah	asu Distr	rict, h	ow many villa	ges of Ram	pur Tehsil
	were	e transferred to	create		Distr	ict ?		
	(A)	Five			(B)	Nine		
	(C)	Fourteen			(D)	Eighteen		
88.	Whe	en was unique II) Aadh	naar Prog	ramn	ne started in	Himachal	Pradesh ?
	(A)	January, 2010			(B)	April, 2010		
	(C)	December, 2010			(D)	March, 2011	ı	
89.	Whi	ch of the follow	ing is	not inclu	aded	in Integrated	Housing	and Slum
	Dev	elopment Progra	mme i	n H.P. ?				
	(A)	Hamirpur			(B)	Baddi		
	(C)	Parwanoo			(D)	Mehatpur		
AE(C)	MPF	P-PPCL/2015		35				P.T.O.

90.	In which	of the following	g disciplines P.	.G. C	lasses are being run at Govt. P.G.
	Ayurved	ic College, Pap	rola (H.P.) ?		196
		111	10,74	(D)	Shalakyatantra
	(A) Ka	yachikitsa		(B)	
			14 10 0		
	(C) Sh	alyatantra		(D)	All of these
91.	Who an	nong the follow	ing refused th	ne 20	14 Padma Awards ?
				(73)	No. 4 demandament
	(A) Sr	i Sri Ravishank	ar	(B)	Mata Amritanandamayi
	(C) M	uhammed Burh	anud-din	(D)	All of these
00	Who is	Inderjit Kaur	2		
92.	WIIO IS	mderjit Radi			
	(A) H	ead of Pingalwa	ara Society		
	(B) C	hairperson, Pur	ijab Women (Comm	nission
				m	
	(C) M	lember Indian	Women Hocke	y Te	am.
	(D) P	unjabi Folk Sir	nger		
AE	(C)MPP-P	PCL/2015	36		\$1083,1375% TILL
C55.555	and the second				

93.	Which farm produce	did not show decl	ine i	n India in production	during 2013-
	2014 crop year ?				
	(A) Sugarcane	failt is a	(B)	Pulses	
	(C) Wheat		(D)	Paddy	
94.	Which is the oldest	Harappan site in	Inc	dia ?	
	(A) Rakhigarhi	2	(B)	Bhirrana	
1	(C) Dholavira	A THE	(D)	None of these	
95.	In which state of In		?		
	(A) Chhattisgarh		(B)	Odisha	
	(C) Madhya Prades	h ((D)	Maharashtra	
96.	Approximately how n	nany countries w	ere	involved in rescue wo	ork after the
	earthquake that hit	Nepal in April, 2	2015	?	
	(A) 17		(B)	23	
	(C) 34		D)	43	
AE(C	C)MPP-PPCL/2015	37			P.T.O.

97.	Gun	ter Grass was a		
	(A)	German writer	(B)	French football player
	(C)	British diplomat	(D)	Polish Scientist
98.	Wha	at is Boko Haram ?		
	(A)	Terrorist outfit	(B)	Literary society in Pakistan
	(C)	Women NGO in Bangladesh	(D)	News agency in the middle east
99.	How many seats did the Conservative Party get in election to the British			
	Parliament held in May, 2015 ?			
	(A)	232	(B)	282
	(C)	322	(D)	
100.	Wh	o is associated with Wikileaks ?		
	(A)	Mark Zuckerberg	(B)	Julian Assange
	(C)	Pablo Nerude	(D)	Mathew Flinders
AE(C	C)MP	P-PPCL/2015 38		