This question paper contains 16+4+2 printed pages]

H.P.A.S. (Main)-2013

CHEMISTRY

Paper II

Time: 3 Hours

Maximum Marks: 150

Note:— Question No. 1 is compulsory and attempt any other four questions out of the remaining seven questions. Attempt five questions in all. All parts of a question must be attempted in continuation at one place.

1. (a) Give reagents for the following reactions:

P.T.O.

(ii) CH₃COCH₂COOEt —?

(b) Give reaction products in the following reactions:

(i) MeO
$$\longrightarrow$$
 NH_3Cl $\stackrel{1. \text{ NaNO}_2}{2. \text{ }H_3PO_2}$

(ii)
$$+ \text{MeOOC.C} = \text{C.COOMe} \xrightarrow{\Delta}$$

Glycerol
$$\xrightarrow{\text{H}_2\text{SO}_4}$$
 $\xrightarrow{\Delta}$

(c) Identify which of the following compounds are chiral?

$$(vi)$$
 Cl
 $C = C = C$
 Me

- (d) Explain the terms stereospecific, stereoselective and regioselective with examples.
- (e) Explain why 3-bromocyclopropene gives white precipitate with silver nitrate readily. Write the reaction and product.
- (f) Complete the following statements:

- (iii) The reaction of benzaldehyde with acetic anhydride in presence of sodium acetate is known as
- (g) Give the structure of 18-crown-6. How does it enhance the oxidation of toluene with KMnO₄?
- (h) Attempt the following :
 - (i) How can you distinguish between o-hydroxy benzaldchyde and p-hydroxy benzaldehyde by IR spectrum?

- (ii) How can you distinguish between methyl benzoate and phenylacetate by proton
- (i) The reaction of m-bromounisole with NaNII₂ in liquid ammonia leads to preferential formation of:
 - (i) o-amino anisole
 - (ii) m-amino anisole
 - (iii) p-amino anisole
 - (iii) 1, 4-Diaminobenzone.
 - (i) Explain the terms aromaticity, anti-aromaticity and homoaromaticity with suitable examples.

(a) Write the product(s), their ratios and relationship,
 if any, for the following reaction:

- (b) Draw Jablonski diagram. What is the difference between phosphorescence and delayed phosphorescence?
- (c) Complete the following reactions:

P.T.O.

- (d) Intramolecular aldol condensation of 2, 5. heptanedione with dilute NaOH yields two enone products in the ratio of 9: 1. The major product has two singlet absorptions in ¹HNMR at δ 1.65 and 1.90. There are no absorptions in the range δ 3-10. Identify the major product.
 - (e) Complete the following reactions and name them:

(i)
$$O$$
 NaOEt EtOH

(ii) EtOOC.
$$(CH_2)_6$$
 COOEt $\xrightarrow{\text{Na}}$ xylene

3. (a) The following reaction proceeds by SET mechanism:

$$\begin{array}{c|c}
Cl & NH_2 \\
\hline
O & NH_2
\end{array}$$

Write all the steps of the mechanism.

- (b) Justify disrotatory thermal ring closure of 1, 3, 5-hexatriene by FMO approach.
- (c) What is supramolecular chemistry? Explain briefly with suitable examples.

- (d) Complete the following reactions and name them.

 Write all the products, wherever possible:
 - (i) 2-Hexanone hv
 - (ii) $CH_3CH_2CH_2CH_2CH_2OC1 \xrightarrow{h\nu}$
 - (iii) D-Glyceraldehyde (i) HCN (ii) Na/Hg
 - (e) What is meant by number average and mass average molar mass in a polymer? Give monomers of poly (methyl methacrylate), polycarbonate and teflon.
 - (a) Comment on the number of signals and their multiplicity in PMR of the following

compounds :

(ii)
$$NH_2$$
 NH_2

- (iii) CH₃CH₂OCCH₂CH₂CH₂COCH₂CH₃
- (b) Complete the following reactions with examples:
 - (i) Fischer-Indole
 - (ii) Von Richter
 - (iii) Bischler-Napieralski.

P.T.O.

(c) Write the product(s) and name the reaction :

$$\frac{\text{K}^+ \text{ OBu}^{\text{t}}}{\text{THF}} ? + ?$$

- (d) Explain the significance of σ(sigma) and ρ(rho) (both sign and magnitude) in Hammett equation. What is the importance of Hammett equation?
- (e) The rates of ethanolysis of PhCH₂CH₂Br, p-(OMe)C₆H₄CH₂CH₂Br and p-(OH)C₆H₄CH₂CH₂Br are in the order <<1, 1 and 10⁶. Explain the order of ethanolysis.

5. (a)	Complete the following statements:
	(i) The boiling point of enol form of ethyl
	acetoacetate is than keto
	form of ethyl acetoacetate.
	(ii) The least aromatic compound amongst pyrrole,
	furan and thiophene is
	(iii) The two electrons in a singlet carbene have
	spin.
	(iv) The addition of HCN to a ketone is an example
	of
	(v) Nitration of benzene and hexadeuterobenzene
	proceeds at rates.
	(va) Claisen rearrangement can also be classified
	(iv) The addition of HCN to a ketone is an example of

- (b) Explain kinetic Vs. thermodynamic control for generation of enolates using 2-methyl cyclohexanone as an example. Which conditions foyour thermodynamic control?
 - (c) Explain what is combinatorial chemistry? What are its advantages and its applications?
 - (d) Outline mechanism for the following reaction :

$$Ph_2C - C \equiv CH \xrightarrow{H^+} Ph_2C = CHCHO$$
OH

(e) Write the product and classify the reaction :

- 6. (a) Explain Franck-Condon principle and its applications in photochemistry.
 - (b) Complete the following reactions:

(ii)
$$\begin{array}{c|c} CH_2CH_3 \\ \hline & & \\ \hline & (1) \ B_2H_6, \ 150^{\circ}C \\ \hline & (2) \ Aq.NaOH/H_2O_2 \\ \end{array}$$

(c) Explain the role of BuNX as phase transfer catalyst in the reaction:

Outline the mechanism of phase transfer catalysis and its advantages.

(d) What are conducting polymers? Explain with a suitable example. What are different applications of conducting polymers?

Give the mechanism and justify your answer.

What is the phenomenon called?

- 7. (a) Complete the following as directed:
 - (i) Give the structure of polymer used in Bullet proof vests,
 - (ii) Give structure of a biodegradable polymer.
 - (iii) What is glass transition temperature ?
 - (iv) Polystyrene has a number average molecular weight of 1,00,000 and a polydispersity of 5. What is its weight average molecular weight?
 - (v) Among cis-and trans-stilbene (PhCH = CHP), which one has a higher λ_{max} and higher ∈ ?
 - (vi) What is nitrogen rule in mass spectroscopy?

(b) Explain the relative reactivities of :

(c) (i) How can you distinguish between

by IR spectroscopy ?

and

- (ii) Give the structure of ion responsible for m/z = 99 peak in the mass spectrum of 2-heptanone.
- (iii) What is the wave number (cm⁻¹) of light of 2.5 micron wavelength ?
- (d) Explain catenanes and rotaxanes with suitable examples.
- (e) (i) Give one example of S_Ni reaction.
 - (ii) Give one example of sharpless epoxidation.
 - (iii) Give one example each of polymer supported reagent and polymer supported catalyst.

- 3. (a) Why does an aprotic solvent favour O-alkylation while a protic solvent favours C-alkylation of ethyl acetoacetate? Write the reaction also.
 - (b) Identify a compound with molecular formula C₄H₁₀O₂ which shows two singlets with an area ratio of 2 : 3. Predict their f value.
 - (c) Complete the following reactions:

(iii) CH₃COCH₂CH₃ + BrCH₂COOEt

$$\begin{array}{c}
1. \ Z_{n} \\
\hline
2. \ H_{2}O, \ H^{+} \Delta
\end{array}$$
P.T.O.

- (d) Describe the stability of singlet and triplet carbenes. Write the products of singlet and triplet carbene (:CH₂) with cis-and trans-2-butene.
- (e) (i) Give an example of ambident nucleophile and its reactions.
 - (ii) Calculate how much faster p-bromobenzyl chloride will solvolyze in water than p-nitrobenzyl chloride.

$$\sigma_{\text{p-Br}}$$
 = 0.2, $\sigma_{\text{p-NO}_2}$ = 0.78 and
$$\rho_{\text{Cl}}$$
 = -1.31.