This question paper contains 16 printed pages]

H.P.A.S. (Main)-2013

MATHEMATICS

Paper 1

Time: 3 Hours

Maximum Marks: 150

Note:— Attempt Five questions in all, Question No. 1 is compulsory. Any four more questions are to be attempted out of the rest. All questions carry equal marks.

कुल **पाँच** प्रश्नों के उत्तर दीजिए । प्रश्न संख्या 1 अनिवार्य है । शेष में से चार प्रश्न और कीजिए । सभी प्रश्नों के अंक समान हैं ।

1. (a) Find A^{-1} of the following matrix A:

$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

- (b) Prove that every subset of a linearly independent set of vectors is linearly independent.
- (c) Prove that every point of intersection of the curve :

$$y = c \sin\left(\frac{x}{a}\right)$$

with x-axis is a point of inflexion.

(d) Prove that :

$$\nabla \times (\nabla \times \alpha) = \nabla (\nabla \cdot \alpha) - \nabla^2 \alpha$$
.

(e) Find the general and singular solutions of the following equation:

$$xp^2 - 2yp + 4x = 0,$$

where
$$p = \frac{dy}{dx}$$
.

(-3)

A point moves in a straight line with simple harmonic motion has velocities v_1 and v_2 when its distances from the centre be x_1 and x_2 . Show that the period of motion is:

$$2\pi \left(\frac{x_1^2 - x_2^2}{v_2^2 - v_1^2}\right)^{\frac{1}{2}}.$$

(अ) निम्न आव्यूह का A-1 ज्ञात कीजिए :

$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

(ख) सिद्ध कीजिए कि रैखिक स्वतंत्र सिदशों के समुच्चय का प्रत्येक उपसमुच्चय रैखिक स्वतंत्र होता है । 'P.T.O. (स) सिद्ध कीजिए कि वक्र

$$y = c \sin\left(\frac{x}{a}\right)$$

का x-अक्ष के साथ प्रत्येक प्रतिच्छेद बिन्दु इसका नित परिवर्तन बिन्दु है ।

(द) सिद्ध कीजिए :

$$\nabla \times (\nabla \times a) = \nabla(\nabla \cdot a) - \nabla^2 a$$
.

(य) निम्नलिखित अवकल समीकरण का व्यापक हल औरविचित्र हल ज्ञात कीजिए :

$$xp^2 - 2yp + 4x = 0,$$

সহাঁ
$$p = \frac{dy}{dx}$$
.

(र) सरल आवर्त गित में चलने वाले किसी कण (बिन्दु) के वेग, केन्द्र से x_1 तथा x_2 दूरी पर क्रमश: v_1 तथा v_2 हैं। सिद्ध कीजिए कि गित का आवर्तकाल है:

$$2\pi \left(\frac{x_1^2 - x_2^2}{v_2^2 - v_1^2}\right)^{\frac{1}{2}}$$
.

 (a) Prove that λ is a characteristic root of a matrix A iff there exists a non-zero vector X such that;

$$AX = \lambda X$$
.

(b) If V(R) be the vector space over the real number field R of all 2 × 2 symmetric matrices and :

$$S = \left\{ \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}, \begin{pmatrix} 4 & -1 \\ -1 & -5 \end{pmatrix} \right\}$$

be the basis of it, then find the coordinates of

$$\begin{pmatrix} 4 & -11 \\ -11 & -7 \end{pmatrix}$$

relative to the basis.

(c) Solve the following equations using matrix method:

$$x + y + z = 6$$

 $3x + 3y + z = 14$
 $3x + y + 2z = 12$

(अ) सिद्ध कीजिए कि एक आव्यूह A का अभिलाक्षणिक मूल λ है, यदि केवल यदि एक अशून्य सदिश X का अस्तित्व इस प्रकार है कि :

$$AX = \lambda X$$
.

(ब) यदि V(R) वास्तविक क्षेत्र R पर 2 × 2 समित आव्यूहका सदिश समिट है तथा

$$S = \left\{ \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}, \begin{pmatrix} 4 & -1 \\ -1 & -5 \end{pmatrix} \right\}$$

इसका एक आधार है तो इस आधार के सापेक्ष $\begin{pmatrix} 4 & -11 \\ -11 & -7 \end{pmatrix}$ के निर्देशांक ज्ञात कीजिए ।

(स) आव्यूह के माध्यम से निम्न समीकरणों को हल कीजिए :

$$x + y + z = 6$$
$$3x + 3y + z = 14$$

$$3x + y + 2z = 12.$$

3. (a) If

$$u = x\phi\left(\frac{y}{x}\right) + \psi\left(\frac{y}{x}\right),$$

then prove that :

$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0.$$

(b) Trace the following curve :

$$x^2y^2 = -(1 + y)^2 (y^2 - 4).$$

(c) Find the volume of the solid generated by the revolution of tractrix

$$x = a\cos t + \frac{a}{2}\log \tan^2 \frac{t}{2}, \ y = a\sin t$$

about its asymptote.

(अ) यदि

$$u = x\phi\left(\frac{y}{x}\right) + \psi\left(\frac{y}{x}\right),$$

(8)

तो सिद्ध कीजिए कि :

$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0.$$

(ब) निम्न वक्र का अनुरेखण कीजिए :

$$x^2y^2 = -(1 + y)^2 (y^2 - 4).$$

(स) ट्रेक्ट्रक्स

$$x = a \cos t + \frac{a}{2} \log \tan^2 \frac{t}{2}$$
, $y = a \sin t$

का अपने अनन्तस्पर्शी के सापेक्ष परिक्रमण से जनित ठोस का आयतन ज्ञात कीजिए ।

- 9)
- (a) State and prove Bessel's inequality for finite dimensional spaces.
 - (b) If

 $f(x) = \sin x$ and $g(x) = \cos x$,

$$\forall \ x \in \left[0, \frac{\pi}{2}\right],$$

then find the value of θ with the help of Cauchy's mean value theorem.

(c) Prove that :

$$\int_{0}^{1} \log \Gamma(x) \ dx = \frac{1}{2} \log 2\pi.$$

(अ) परिमित विमीय क्षेत्रों पर आधारित बेसल की असिमकाको परिभाषित और सिद्ध कीजिए ।

(10)

(ब) यदि

$$f(x) = \sin x$$
 और $g(x) = \cos x$, $\forall x \in \left[0, \frac{\pi}{2}\right]$,

तो कौशी मध्यमान प्रमेय की सहायता से θ का मान ज्ञात कीजिए ।

(स) सिद्ध कीजिए:

$$\int_{0}^{1} \log \Gamma(x) \ dx = \frac{1}{2} \log 2\pi.$$

- (a) Show that the general equation of second degree in x, y always represents a conic.
 - (b) Reduce the equation :

$$x^{2} + y^{2} + z^{2} - 6yz - 2zx - 2xy - 6x - 2y - 2z + 2 = 0.$$

to canonical form and state the nature of the surface.

(c) Find the condition when the plane

$$ax + by + cz = 0$$

cuts the cone

$$yz + zx + xy = 0$$

in perpendicular lines.

- (अ) सिद्ध कीजिए कि x, y में व्यापक द्विघात समीकरण सदैव एक शांकव को निरूपित करती है।
- (ब) समीकरण :

$$x^2 + y^2 + z^2 - 6yz - 2zx - 2xy -$$

$$6x - 2y - 2z + 2 = 0$$

का विहित रूप में समानयन कीजिए तथा इसके द्वारा प्रदर्शित पृष्ठ की प्रकृति बताइये । (स) वह प्रतिबंध ज्ञात कीजिए जब समतल

$$ax + by + cz = 0$$

एक शंकु

$$yz + zx + xy = 0$$

को परस्पर लम्ब रेखाओं में काटता है।

6. (a) Solve :

$$(D^4 + D^2 + 1)y = ax^2 + be^{-x} \sin 2x$$
,
where $D \equiv \frac{d}{dx}$.

(b) Solve :

$$x\frac{d^2y}{dx^2} - (2x - 1)\frac{dy}{dx} + (x - 1)y = 0.$$

- (c) State Bessel's differential equation and solve it in power series.
- (अ) हल कीजिए :

$$(D^4 + D^2 + 1)y = ax^2 + be^{-x} \sin 2x,$$

जहाँ $D = \frac{d}{dx}$.

(ब) हल कीजिए :

$$x\frac{d^2y}{dx^2} - (2x - 1)\frac{dy}{dx} + (x - 1)y = 0.$$

- (स) बेसल की अवकल समीकरण को परिभाषित और इसे घात श्रेणी में हल कीजिए ।
- (a) Evaluate :

$$\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+\log y} e^{x+y+z} dx dy dz.$$

(b) Prove that :

$$grad(a.b) = (b.\nabla) a + (a.\nabla) b +$$

 $b \times \text{curl } a + a \times \text{curl } b$.

(c) Verify Stokes' theorem for the function

$$F = zi + xj + yk$$

where C is the unit circle in the xy-plane bounding the hemisphere

$$z = \sqrt{(1 - x^2 - y^2)}$$
.

(14) Math.-I

(अ) मान ज्ञात कीजिए :

$$\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+\log y} e^{x+y+z} dx dy dz$$

(ब) सिद्ध कीजिए कि:

$$grad(a.b) = (b.\nabla) a + (a.\nabla) b +$$

 $b \times \text{curl } a + a \times \text{curl } b$.

(स) स्टोक्स प्रमेय की फलन

$$F = zi + xj + yk$$

के लिए सत्यापन कीजिए जहाँ C एक xy-समतल का इकाई वृत्त है जो

$$z = \sqrt{(1 - x^2 - y^2)}$$
.

गोलार्ध को परिबद्ध किए हुए है ।

- 8. (a) Five weightless rods of equal lengths are jointed together so as to form a rhombus ABCD with one diagonal BD. If a weight W be attached to C and the system be suspended from A, then find the thrust in BD.
 - (b) A particle moves in a curve so that its tangential and normal accelerations are equal and the angular velocity of the tangent is constant. Find the curve.
 - (c) A particle is moving vertically downwards from rest through a medium whose resistance varying as velocity. Discuss its motion.
 - (अ) समान लम्बाई की पाँच भारहीन छड़ें परस्पर जोड़ी गई हैं तािक एक विकर्ण BD सहित समचतुर्भुज ABCD बने । यदि C पर एक भार W बाँध दिया जाए और निकाय को A से लटकाया जाए, तो BD में प्रणोद जात कीिजए ।

P.T.O.

- (ब) एक कण किसी वक्र में इस प्रकार चलता है कि इसके स्पर्शरेखीय एवं अभिलाम्बिक त्वरण सदैव समान रहते हैं और उसकी स्पर्शरेखा का कोणीय वेग अचर रहता है । वक्र ज्ञात कीजिए ।
- (स) एक कण विरामावस्था से गुरुत्वाकर्षण के अधीन एक ऐसे माध्यम से होकर गिरता है जिसका प्रतिरोध उसके वेग के समानुपाती है । इसकी गति की विवेचना कीजिए ।