HPAS (Main)-2013

STATISTICS

Paper II

Time: 3 Hours

Maximum Marks: 150

Note:— Attempt Question Number 1 which is compulsory
and any four questions from the rest, five in all.

All questions carry equal marks. Symbols have their usual meanings.

- (a) Explain the following with examples:
 - (i) Hypotheses
 - (ii) Test
 - (iii) Critical Region
 - (iv) Errors in testing of Hypotheses.

- (b) Give tests for the following hypotheses:
 - (i) $\rho = 0$
 - (ii) $\rho = .4$
 - (iii) $\rho_1 = \rho_2 = \rho_3$
 - (iv) $\mu = \mu_0$ in N(μ , σ^2), σ^2 known.
- (c) Explain why random numbers 00, 97, 98, 99 are omitted for selecting a sample random sample of size 6 from the population of size 16.
- (a) Describe a method of finding out the most powerful test for testing a simple null hypothesis against a simple alternative hypothesis involving one parameter.
 - (b) For testing H₀: μ = 10 against H₁: μ = 15 in N(μ, σ²), σ² known, critical region is taken as \$\overline{x}\$ > 10 where \$\overline{x}\$ is the sample mean. Calculate level of significance.

- 3. (a) Describe various tests based on t distribution.
 - (b) For a most powerful test, prove that :

$$(1 - \beta) \ge \alpha$$

where α and β are the probabilities of making first and second kind of errors respectively.

- 4. (a) Discuss the need of non-parametric tests.
 When should the non-parametric tests preferably be used? Discuss their advantages and disadvantages.
 - (b) Describe test of randomness of a given sample.
- 5. Writing down the assumptions usually made in the general linear model :

$$\underline{\underline{Y}}_{n \times 1} = \underline{\underline{X}}_{n \times p} \underline{\underline{\beta}}_{p \times 1} + \underline{\underline{u}}_{n \times 1}$$

(4)

find out the least square estimator of β and discuss its properties. Also present a brief account of tests of hypothesis concerning β in this model under normality assumptions.

- 6. (a) Stating conditions show that ratio estimator is the best linear unbiased estimator under these conditions.
 - (b) Distinguish between two stage and double sampling.
- 7. (a) Prove that sampling variance of the proportion of males in a simple random sample of n people drawn from a population of N units is:

$$\frac{N-n}{Nn} \frac{PQ}{n}$$

where Q = 1 - P and P is the population proportion of males.

- (b) Distinguish between sampling and non-sampling errors.
- 8. (a) Explain analysis of 2³ factorial experiment conducted in randomised blocks.
 - (b) Write down the model for Latin Square Design (LSD). If degrees of freedom (d.f.) for error sum of squares in a LSD is 6, give the order of this design.