Booklet Serial No. :

0821

TEST BOOKLET SERIES

TEST BOOKLET AE (M)-3/2014

Time Allowed : 2 Hours

Maximum Marks: 100

All questions carry equal marks.

INSTRUCTIONS

- Immediately after the commencement of the examination, you should check that test booklet does not have any unprinted or torn or missing pages or items, etc. If so, get it replaced by a complete test booklet.
- Encode clearly the test booklet series A, B, C or D as the case may be in the appropriate place in the answer sheet.
- 3. Write your Roll Number only in the box provided alongside.

 Do not write anything else on the Test Booklet.
- This Test Booklet contains 100 items (questions). Each item comprises four responses (answers). Choose only one response for each item which you consider the best.
- 5. After the candidate has read each item in the Test Booklet and decided which of the given responses is correct or the best, he has to mark the circle containing the letter of the selected response by blackening it completely with Black or Blue ball pen. In the following example, response "C" is so marked:
 - (A)
-)
- 6. Do the encoding carefully as given in the illustrations. While encoding your particulars or marking the answers on answer sheet, you should blacken the circle corresponding to the choice in full and no part of the circle should be left unfilled.
- You have to mark all your responses ONLY on the ANSWER SHEET separately given according to INSTRUCTIONS FOR CANDIDATES already supplied to you. Responses marked on the Test Booklet or in any paper other than the answer sheet shall not be examined.
- All items carry equal marks. Attempt all items. Your total marks will depend only on the number of correct responses marked by you in the Answer Sheet. There will be no negative marking.
- Before you proceed to mark responses in the Answer Sheet fill in the particulars in the front portion of the Answer Sheet as per the instructions sent to you.
- 10. After you have completed the test, hand over the Answer Sheet only, to the Invigilator,

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

AE (M)-3/2014

Time Allowed : 2 Hours

[Maximum Marks: 100

 For a given set of operating pressure limits of a Rankine cycle, the highest efficiency occurs for :

(A) Saturated cycle

(B) - Superheated cycle - 1200

(C) Reheat cyclo

(D) Regenerative cycle

The main advantages of a reheat Rankino cycle is:

- (A) reduced moisture content in lew pressure side of turbine
- (B) increase efficiency
- (C) reduced load on condenser
- (D) reduced load on pump
- 3. Which one of the following is correct? In ideal regenerative cycle, the temperature of steam entering the turbine is same as that of:
 - (A) Water entering the turbine
 - (B) Water leaving the turbine
 - (C) Steam leaving the turbine
 - (D) Water at any section of the turbine

AE(M)-A

- In convergent-divergent nozzle, normal shock can generally occur:
 (A) along the divergent portion and throat
 - (B) along the convergent portion
 - (C) anywhere along the length
 - (D) near the inlet
 - - (A) Steam at inlet is superheated
 - (B) Steam at inlet is saturated
 - (C) Steam gets supersaturated
 - (D) Steam at inlet is wet
 - 6. In flow through convergent nozzle, the ratio of back pressure to the inlet pressure is given by the ratio :

$$\frac{p_b}{p_1} = \left(\frac{2}{\gamma + 1}\right)^{\frac{2\gamma}{(\gamma - 1)}}.$$

If the back pressure is lower then p_b given by the above equation, then :

- (A) the flow in the nozzle is supersonic
- (B) a shock wave exists inside the nozzle
- (C) the gases expand outside the nozzle and a shock wave appears outside the nozzle
- (D) a shock wave appears at the nozzle exit

147 47	of friction through the nozzle, the following
7. For a adiabatic expansion with the	ne friction through the nozzle, the following
remains constant:	
	(B) Static enthalpy
(A) Entropy	
	(D) Stagnation pressure
(C) Stagnation enthalpy	
	To to 1
er at of friction on flow o	of steam through nozzle is to :
8. The effect of friend	
g	rate and to increase the wetness at the exit
(A) decrease the mass now	Earlie Market
	the exit temperature
(B) increase the mass flow	rate and to increase the exit temperature
(B)	t the exit
the manager flow	rate and to decrease the wetness at the exit
(C) decrease the mass now	
	ishout any effect on the mass flow rate
(D) increase the exit temper	erature without any effect on the mass flow rate
New York Control of the Control of t	2 97°C is 330 m/s
to its of propagation	n of small disturbance in air at 27°C is 330 m/s
then at a temperature of 5	4°C, its speed would be :
then at a temperature of	
	(B) 330 √2 m/s
(A) 660 m/s	(12)
3	5-00 1000 m/s
(C) 330/√2 m/s	(D) 330 \sqrt{327 / 300 m/s}
(C) 330/√2 m/s	
	4
AE (M)—A	

$$({\rm A}) ~~ {\rm M}_2 < {\rm M}_1, \, p_1 < p_2$$

(B) $M_2 < M_1, p_1 > p_2$

(C)
$$M_2 > M_1, p_1 > p_2$$

(D) $M_2 > M_1, p_1 < p_2$

- The stagnation temperature is of an isentropic flow of air (γ = 1.4) is 400 K.
 If the temperature is 200 K at a section, then the Mach number of the flow will be :
 - (A) 1.046

(B) 1.264

(C) 2.236

(D) 3.211

- 12. Isentropic flow is :
 - (A) irreversible adiabatic flow
 - (B) reversible adiabatic flow
 - (C) ideal fluid flow
 - (D) frictionless reversible flow

5

) kmph at an altitude, where the
	sir te	mperature is 0°C. The flight	Mach 1	number at this speed is nearly :
	(A)	1.5	(B)	0.254
	(C)	0.67	(D)	2.04
14	Inav	apor compression refrigeratio	n systen	m, liquid to suction heat exchanger
	is use	ed to :		
	(A)	keep the COP constant	i i	
	(B)	provent the liquid refrigora	int from	a entering the compressor
	(C)	sub-cool the liquid refriger	ant leav	ving the condenser
	(D)	sub-cool the vapor refriger	ant fron	n the evaporator
15.	Exce	essive pressure drop in the	e liquid	d line in a refrigerating system
	cans	es :		
	(A)	high condenser pressure		
	(B)	flashing of the liquid refr	gerand	
	(C)	higher evaporator pressur	8	
	(D)	under cooling of the liqui	d refrig	gerant
AE	(M) -	А	6	

16	. The	enthalpies at the beginning of compression at the end of compression
	and	t the end of condension are 185 kJ/kg, 210 kJ/kg and 85 kJ/kg, respectively.
	The	COP of the vapor compression refrigeration system is :
	(A)	0.25 (B) 5.0
	(C)	4.5 (D) 1.35
17	The	offect of super-heating of vapor in the evaporator and sub-cooling of
	cond	nsate in the condenser, for the same compressor work is :
	(A)	increase the COP
	(B)	decrease the COP
	(C)	super-heating increases COP, but sub-cooling decreases COP
	(1)	super-heating decreases COP, but sub-cooling increases COP
18.	For t	e same condenser and evaporator temperatures, the COP of absorption
	refri	eration system is less than that of mechanical vapor compression
	refrig	eration system since in the absortion refrigeration system :
	(A)	a liquid pump is used for compression
	(H)	a refrigerant as well as a solvent is used
	(C)	absorbor requires heat rejection
	(D)	low grade energy is used to run the system
ΔE	(M)—A	7. P.T.O.

19.	In the	absorption refriger	ation eyele, th	ie comp	pressor of the vapor compression
	refrig	eration cycle is rep	laced by :		
	(A)	liquid pump	4		
	(B)	generator			
	(C)	absorber and gene	erator		
	(D)	absorber, liquid p	ump and ge	nerator	
20.	In a	vapor absorption r	celrigerator,	heat is	rejected in
	(A)	Condenser only		(B)	Generator only
	(C)	Absorber only		(L))	Condenser and absorber
21,	The	atmosphere air at	dry bulb ter	nperati	ure of 15°C enters a heating co
	reai	ntained at 40°C. T	he air leave	the h	neating coil at 25°C. The by-pas
	fact	or of the heating e	oil is :		
	(A)	0.376		(B)	0.4
	(C)	0.6	1.5	(D)	0.67
Al	-(M)	Ā	, 18	3	

22.	By-p	ass factor for a cooling coil :
	(A)	increase with increase in velocity of air passing through it
	(B)	decrease with increase in velocity of air passing through it
	(C)	remains unchanged with increase in velocity of air passing
		through it
	(D)	may increase or decrease with increase in velocity of air passing through
		it depending upon the condition of air entering
3.	In ca	ase of sensible cooling of air, the coil efficiency is given by (BPF = by-
	pass	factor);
	(A)	BPF - 1 (B) 1 - BPF
	(C)	1/BPF (D) 1 + BPF
4.	In a	saturated air-water mixture, the :
	(A)	dry bulb temperature is higher than the wet bulb temperature
**	(B)	dew point temperature is lower than the wet bulb temperature
	(C)	dry bulb, wet bulb and dew point temperatures are the same
	(D)	dry bulb temperature is higher than the dew point temperature

P.T.O.

AE (M)—A

2000 2000 2000	to obered or more as	* Chianing Some	tant during adiabatic coding :
(A)	Dry bulb temperature	e (B)	Specific humidity
(C)	Relative humidity	(10)	Wet bulb temperature
An IC	engine has a bore a	nd stroke of 2 i	units each. The area to calculate
heat l	oss can be taken as		
(A)	4 п	(B)	5 π
(C)	6 π	(D)	δ π
With	increasing temperatu	re of intake air	, IC engine efficiency :
(A):	decreases	(B)	increases
$\{C\}$	remains the same	(D)	depends on other factor
For th	he same maximum pi	ressure and her	st input :
(A)	the exhaust temperat	ure of petrol ons	gine is more than that of the diesel
	engine		
(B)	the exhaust temperat	ure of diesel eng	gine is more than that of the petrol
	engine		
(O)	the exhaust tempera	ture of dual cyc	de engine is less than that of the
	diesel engine		
(10)	the exhaust tempera	ture of dual eye	le engine is more than that of the
	petrol engine		
(M) - A		10	
	(A) (C) An IC heat I (A) (C) With (A) (C) (B) (D)	 (A) Dry bulb temperature (C) Relative humidity An IC engine has a bore as heat loss can be taken as heat loss can be taken as (A) 4 π (C) 6 π With increasing temperature (A) decreases (C) remains the same For the same maximum production of the exhaust temperature engine (B) the exhaust temperature engine (C) the exhaust temperature diesel engine (D) the exhaust temperature diesel engine (D) the exhaust temperature (D) the exhaust temperature (D) the exhaust temperature (E) the exhaust temperature (E) the exhaust temperature (E) the exhaust temperature (E) the exhaust temperature 	 (A) Dry bulb temperature (B) (C) Relative humidity (D) An IC engine has a bore and stroke of 2 of heat loss can be taken as: (A) 4 π (B) (C) 6 π (D) (D) (E) remains temperature of intake air (A) decreases (E) remains the same (D) (E) remains the same (D) (E) the exhaust temperature of petrol engine (E) the exhaust temperature of diesel engine (E) the exhaust temperature of dual cyclicises engine (E) the exhaust temperature of dual cyclicises engine (D) the exhaust temperature of dual cyclicises engine (E) the exhaust temperature of dual cyclicises engine (D) the exhaust temperature of dual cyclicises engine (D) the exhaust temperature of dual cyclicises engine

29.	If the	compression ratio of	an engine workir	ng on Otto cycle is incre	ased from
	5 to	7, the % age increase	e in efficiency w	ill be :	
	(A)	4%	(B)	8%	
	(C)	14%	(D)	27%	
30.	The	magneto in an autom	obile is basicall	у :	
	(A)	transformer	(B)	d.c. generator	
	(C)	magnetic circuit	(D)	a.c. generator	
31.	Self-	ignition temperature	of petrol is of th	ne order of :	
	(A)	150°C	(B)	370°C	
	(C)	450°C	(D)	more than 500°C	- 8
32.	Whi	ch is correct statemen	t about reaction	time for autoignition	of fuel and
	the	fuel air ratio ?			
	(A)	Lean mixture has	high reaction tir	ne	
	(B)	Rich mixture has l	nigh reaction tin	ne	
	(C)	Chemically correct	mixture has mi	nimum reaction time	
	(D)	All of the above			
AE	(M)—,	A	11		P.T.O

			e or atmoto opene B	s compared
33.	For same power and same	ne speed, the flyv	vheel of a four-stroke engine a	
	to two-stroke L.C. eng			
	(A) smaller			1.0
	(B) bigger			
*	(C) same size			
	(D) dependent on	other engine p	arameters	
34.			electrode is called:	
	(A) protective la		(B) slag	
	(C) deoxidiser		(D) flux	
	to thermit welding	g, the iron exide	e and aluminium oxide are	mixed in the
131				
	proportion of:			
	(A) 1:1		(B) 3:1	
	(C) 1:3		(D) None of these	
	tw agetV	tene ratio in car	se of neutral flame is :	
			(B) 1:1	
	(A) 0.8: 1.0			
	(C) 1.2 : 1		(D) 2:1	
	AE (M)—A		12	

	(A)	carbon steel	(B)	properly treated sand	
	(C)	abrasive material	(D)	no core is used	
38.	Core	prints are used to :			
	(A)	strengthen core			
	(B)	form seat to support and l	nold the	core in place	
	(C)	fabricate core			
	(D)	all of the above			
39.	Three	ad rolling is somewhat like	*		
	$\langle \Delta \rangle$	cold extrusion	(B)	cold machining	
	(C)	cold rolling	(D)	cold forging	
40.	Cutti	ng and forming operations	can be do	me in a single operation	on :
	(A)	Simple die	(B)	Compound die	
	(C)	Combination die	(D)	None of these	
ΛE	(M)—A		13		P.T.(

The core in the centrifugal casting is made of :

41.	The metal in machining operation is re	mov	ed by :
	(A) Tearing chips		
	(B) Distortion of metal		
	(C) Shearing the metal across a zon	e	
	(D) Cutting the metal across a zone		
42.	machining method is best to		d for :
12.000		B)	Plastics
		D)	Non-ferrous alloys
43	3. Feed rate in milling operation is equ	al t	0:
	(A) RPM		
	(B) RPM × No. of teeth		
	(C) RPM × Feed per tooth × No.	of t	eeth
	(D) None of the above		
4	44. Machinability depends on :		and composition of
		nech	anical properties and composition of
	workpiece material		
	(B) cutting forces		
	(C) type of chip		
	(D) tool life	gu	
	AE (M)—A	4	

45.	Tim	me taken to drill a hole through a 25 mm th	nick plate at 300 r.p.m. at a
	feed	ed rate of 0.25 mm/revolution will be :	
	(A)) 10 sec . (B) 20	sed
	(C)	40 sec (D) 50	sec
46,	'The	e coordinate of any point on Mohr's circle r	epresent :
	(A)	State of stress at a point with reference to a	ny arbitrary set of orthogonal
		axes passing through that point	
	(B)	Principal stresses at a point	
	(C)	One of the two direct stresses and shear	ing stress at a point
	(D)	Two direct stresses at a point	
17.	Shrir	rinking a thick cylinder over another helps	
	(A)	reduce the magnitude of tensile hoop str	ess
	(B)	reduce the difference between the higher ar	id lower magnitude of tensile
		hoop stress	
	(C)	remove the longitudinal stress	
ai.	$\langle D \rangle$	reduce the cost	
AE (M)—A	A 15	P.T.O

48.	In fixed beam of length (1) with a concentrated central load two points of
	contraffexure will occur, each from supports at a distance of :

- (A) 1/3 (B) 1/√3
- (C) 1/6 (D) 1/4
- 49. Load p_c and p_0 respectively acting axially upon close coiled and open coiled helical springs of same wire dia, coil dia, no. of coils and material to cause same deflection :
 - (A) p_c/p_0 is 1, < 1 or > 1 depending upon α
 - (B) $p_r/p_0=1$
 - $(C) \quad p_c/p_0 > 1$
 - (D) $p_e/p_0 < 1$
 - 50. A bad observation which must be ignored can be identified by :
 - (A) observing the data
 - (B) using observation to calculate and see if result deviates too much
 - (C) finding arithmetic mean and seeing which observation deviates most
 - (D) plotting the result and socing which observation deviates most from the line

51.	Select the wrong statement, Fatigue crack initiates on surface because :
	(A) in most cases stress is highest on surface
	(B) surface is machined
	(C) surface is inherently weaker than the inside
	(D) there may exist some stress concentration on surface
52.	Goodman straight line relation suggests that variable stress component in
	the presence of a positive mean stress:
	(A) decreases
	(B) increases
	(C) remains unaffected
	(D) increases or decreases depending upon σ_u
53.	A machine part made of steel of ultimate tensile strength of 500 MPa and
	carrying a compressive mean stress of 50 MPa can be made to carry a maximum
	tensile stress of:
	(A) 175 MPa (B) 225 MPa
	(C) 275 MPa (D) 325 MPa
AF	(M)—A 17 P.T.O.

54. A fatigue crack in a sound and smoo	oth specimens takes :
(A) longer time in initiation than	propagation
(B) longer time in propagation th	an initiation
(C) equal time in initiation and	propagation
(D) no time in propagation	
55. Ellipse of stress can be drawn only	y when a body is acted upon by :
(A) one normal stress	
(B) two normal stresses	
(C) one shear stress	
(D) two normal stresses and or	
56. Strain energy stored in a body de	ue to a suddenly applied load compared to
when applied slowly is:	
(A) twice	(B) four times
(C) eight times	(D) half
AE (M)—A	18

61. If a small	cut is made at a ho	orizontal	diame	ter of a ring un	der compres	sion,
the maxic	num steess :					
(A) doc	reases	•	(B)	increases		
(C) do	es not change		(D)	hecomes zero		
62. Secant f	ormula is applicab	le for :				
(A) sl	nort columns under	r axial l	oading			
(B) lc	ong columns under	axial l	oading			
	nort columns unde					
	ong columns unde					de to
63. The w	se of compound tu	bes subj	ected t	o internal pres	sure are ma	Or see
(A)	even out the stres	sses				
(B)	increase the thick	ness				
(C)	increase the dian	neter of	the tul	ne		
(D)	increase the stre	ngth				
ΛΕ (M) β			20	52		

- 64. The initial hoop stress in a thick cylinder when it is wound with a wire under tension will be:
 - (A)

tensile (B)

compressive

- (D) bending
- The collapse speed of a rotating solid disc is given by : 65.

(A)
$$\omega = \frac{1}{R} \sqrt{\frac{3\sigma_y}{\rho}}$$

(B)
$$\omega = \frac{1}{R} \sqrt{\frac{\sigma_y}{3\rho}}$$

(C)
$$\omega = \frac{1}{R} \sqrt{\frac{2\sigma_y}{\rho}}$$
 - (D) $\omega = \frac{1}{R} \sqrt{\frac{\sigma_y}{2\rho}}$

(D)
$$\omega = \frac{1}{R} \sqrt{\frac{\sigma_y}{2\rho}}$$

Where σ_y is yield stress, ρ is the density and R is the radius of the disc.

- In circular plates with edges clamped and with a uniformly distributed load, 66. the maximum radial stress occurs at :
 - (A) clamp edge

(B) the centre

the mean radius

- none of these
- In which of the following mechanism, the Coriolis acceleration exists? 67.
 - whitworth quick return mechanism
 - (B) tangent cam mechanism
 - both (A) and (B)
 - (D) one of the above

AE (M) - A

68. In case of pivot bearing, the wear is	.\$5
(A) maximum at the centre	
(B) zero at the centre	
(C) uniform throughout the conta	act arc
(D) minimum at maximum radiu	ns
69. The crowning of pulley is done to	
(A) improve power	
(B) improve pulley strength	
(C) increase velocity ratio	
(D) prevent the belt running	off the pulley
70. Which of the following governor	
(A) Watt	
(C) Proel	(D) Porter
71. Which of the following gears	are used to connect two non-parallel non-
intersecting shafts?	(B) Helical
(A) Spur	TO THE
(C) Bevel	(D) Worm gear 22
AR (M)—A	

	(A)	Involute		(B)	Cycloidal		
	(C)	Conjugate	- Te	(D)	None of these		
73.	A rig	gid body is said to	be in ec	puilibrium	if:		
	(A)	$\Sigma F_{x} = 0$		(B)	$\Sigma \mathbf{F}_{y} = 0$		
	(C)	$\Sigma M_e = 0$	*	(D)	All of these		
74.	Lanc	hester technique	of balanci	ng can be	used for balan	cing of:	
	(A)	Primary forces		(B)	Secondary for	ces	
	(C)	Pitching moment	ts	(D)	All of these		
7ā.	Mass	m attached to a	shaft rota	ting at ω	rad/s at radius .	r from th	e axis ol
	shaft	is balanced by ma	ass m_b at	radius r_b	from the axis. I	f the spec	nd of the
	shaft	is doubled for ba	lance, the	value of	mass m_b is :		
	(A)	Doubled		(B)	Quadruplo		
	(C)	Halved		(D)	Unaffected		
AE (M)—A			23			P.T.O.

72. From the point of view of strength which gear profile is better?

6. In damped free vibrating system	A 2
S. In damped new vector	acts in the direction opposite to the
(A) the spring force vector	
	* A Section 1
displacement	
(B) the damping force vector	acts in the direction opposite to the velocity
	tion opposite to the acceleration
(C) the inertia force vector as	cts in the direction opposite to the acceleration
Walker Street	are true
(D) all of the above statem	ents are
	fectors at frequen
77. The transmissibility is same	for all values of damping factors at frequen
ratio of :	
(A) 1	(B) 2
	4.00
(C) √2	(D) $1/\sqrt{2}$
78. In a force vibration at the	resonance, the phase angle is :
(A) 0°	(B) 45°
	(D) 180°
(C) 90°	
AE (M)—A	24
All (M)	

82.	Who of the following is associated w	ith Muslim Brotherhood in Egypt ?	
	(A) Mohammad Morsi	(B) Abdel Fattah al-Sisi	
	(C) Hosni Mubarak	(D) Basil Jarret (from Zamaica)	
83.	ISIS stands for :		2
	(A) Islamic System of Iraq and S(B) Islamic State of Iraq and System		
	(C) Islamic State of Iraq and Su	dan	
	(f)) Islamic State of Iran and Su		
84.	. The main focus of Energy Efficient	ey and Renewable Energy Managem	ent
	Centre is on :		
	(A) Thermal Power	(B) Nuclear Power	
	(C) Solar Power	(D) Both nuclear and solar pov	wer
85	How many glacial lakes are there	in HP?	
	(A) 200	(B) 230	
	(C) 239	(D) 249	
A	AE (M)- A	26	

	corre	ct ?								
	(A)	It is a	a reserv	e Forest n	ear Shim	24.				
	$\langle \mathbf{B} \rangle$	It is	a glacial	Lake of l	HP -					
	(C)	It is	a river i	in HP						
	(D)	It is	a glacie							
37.				iosh gover						
	biode	ogradab	le dispo	sadable pla	astic cups	, plate	s and	dasses i	a whi	h of the
	follo	wing ye	ears "							
	(A)	2010			(I	t) 2	011			
	(C)	2012			(I)) 2	013	- 22		
88.	The	overall	glacier	area has	reduced f	rom 1	962-200)1 to :		
	(A)	2077	sq. km							
	(B)	2000	sq. km							
	(C)	1628	eq. km							
	(D)	1600	sq. km							
ΛE	(M)—	Λ			27					P.T.(

Which of the following statements about Lalpani in Himachal Pradesh is

9.	In 2005	, the non-biodegradal	ble wast	e in E	fullu was :	
	(A) 1	6.9% of the total was	ite	(B)	26.2% of the total wast	e
	(C) 3	2.4% of the total was	ste	(D)	34.8% of the total wast	e.
90.	Which	of the following repor	t of the	Nation	al Law Commission cont	ains the
	guideli	nes for making the	crimina	al just	tice system more effect	ive and
	respon	sive ?				
	(A)	239		$\langle {\bf B} \rangle$	249	
	(C)	258	-	$\langle \mathbf{D} \rangle$	269	
91.	Mary	Kem, a renowned Bo	exer, belo	ongs to	o which of the following	States ?
	(A)	Assam		·B?	Nagaland	
	(C)	Manipur		(D)	Mizoram	
92.	Whiel	h of the following state	ments al	bout th	e Prime Minister's Jan D	han Yojna
	is no	t true ?				
	(A)	It is a financial inc	lusion b	ased s	cheme for the poor	
	(B)	It provides for accid	dent insi	irance	cover of rupees 1 lakh	
	(C)	It provides for med	ical inst	irance	cover of Rs. 30,000.00	
	(D)	It provides for a free	debit ca	rd for	those who open bank acco	unts before
		31st December, 20			2.14	
Al	E (M)	A	35	28		

93.	India	and Australia signed ir	September	2014 which of the	following
	agree	ements ?			
	(A)	Thermal power supply		A.F	
	(B)	Civil Nuclear deal		3 s	
	(C)	Nuclear Non-proliforation	n Agreement		6
	(D)	Indo-Australia Defence	Agreement		
94.	Acco	ording to the Supreme Cour	t, the under	trial prisoners having	served half
		maximum term for the cri	100		
	be 1	released under which of th	e following s	ection of the Crimina	al Procedure
	Cod	le ?			
	(A)	Section 432 A	(B)	Section 433 A	
	(C)	Section 436 A	(D)	Section 439 A	
95.	Ka	la Azar is most prevalent	in which of	the following states	? "
	(A)	Himachal Pradesh	(B)	West Bengal	
	(C)	Jharkhand	(D)	Bihar	D.T.O.
ΑE	(M)-	-A	29		P.T.O.

96.	Boko	Haram is:					
	(A)	An Islamic Extremist Group					
	(B)	A political Party in Nigeria					
	(C)	An extremist Organization in Afghanistan					
	(D)	An Islamic Political Party in Iran					
97.	The i	international Security Assistance force in Afghanistan would come to an					
	end o	DIN 1:					
	(A)	November 21, 2014 (B) November 30, 2014					
	(C)	December 25, 2014 (D) December 31, 2014					
98.	Accor	According to Ivo Daalder, Ukrainian crisis can be solved by which of the					
	follov	wing steps ?					
	(1)	Ending support to the separatists by Russia					
	(ii)	Withdrawal of Russian troops and equipment					
	(iii)	Recognition by Russia of the Ukrainian sovereignty and integrity					
	(iv) A more robust intervention by Russia in Ukrain						
	Select the correct answer from the codes given below:						
	Code						
	(A)	(i), (ii), (iii) and (iv) only (B) (i), (ii) and (iii) only					
	(C)	(ii) and (iii) only (D) (i), (iii) and (iv) only					
AE	(M)—A	30					

	(A)	May 1, 1706	(B)	May 1, 1707	
	(C)	May 1, 1708	(D)	August 1, 1708	
100	All w	romen police stations are	operational in	which of the following	g cities/towns
	of H	imachal Pradesh ? .	T ₉₂₀		
	(i)	Chamba	(ii)	Shimla	
	(iii)	Dharmashala	(iv)	Mandi	
	Selec	t the correct answer fro	m the codes ;	given below :	
	Code				
	(A)	(i), (ii) , (iii) and (iv)	(B)	(i), (ii) and (iii)	
	(C)	(ii), (iii) and (iv)	(D)	$\langle iii \rangle$ and $\langle iv \rangle$	
ΑĖ	(M)—A		31		

Scotland bacame a part of the United Kingdom effectively on :