Booklet Serial No.: 0101

[Maximum Marks: 100

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

TEST BOOKLET AP(AS&H) PHYSICS-3/2014

100	INSTRUCTIONS
1.	Immediately after the commencement of the examination, you should check that test booklet does not have any unprinted or torn or missing pages or items, etc. If so, get it replaced
0	by a complete test booklet. Write your Roll Number only in the box provided alongside.
2,	Down anything else on the Test Booklet.
3.	This Test Booklet contains 100 items (questions). Each item comprises four responses
4.	After the candidate has read each item in the Test Booklet and decided which of the given responses is correct or the best, he has to mark the circle containing the letter of the selected response by blackening it completely with Black or Blue ball pen. In the following
	example, response "C" is so marked :
	(A) (B) (D)
5.	Do the encoding carefully as given in the illustrations. While encoding your particulars or marking the answers on answer sheet, you should blacken the circle corresponding to the choice in full and no part of the circle should be left unfilled.
6.	You have to mark all your responses ONLY on the ANSWER SHEET separately given according to INSTRUCTIONS FOR CANDIDATES' already supplied to you. Responses marked and the Took Booklet or in any paper other than the answer sheet shall not be examined.
7,	All items carry equal marks. Attempt all items, Your total marks will depend only on the number of correct responses marked by you in the Answer Sheet. There will be no
S.	negative marking. Before you proceed to mark responses in the Answer Sheet fill in the particulars in the front portion of the Answer Sheet as per the instructions sent to you.
9.	After you have completed the test, hand over the Answer Sheet to the Invigilator.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

Time Allowed: 2 Hours]

[Maximum Marks 10]

1. Time-dependent Schrodinger equation for a free particle in one-dimensional

is :

(A)
$$i\hbar \frac{\partial}{\partial t} \varphi(x, t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \varphi(x, t)$$

(B)
$$i\hbar \frac{\partial^2}{\partial t^2} \varphi(x, t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \varphi(x, t)$$

(C)
$$i \frac{\partial^2}{\partial t^2} \phi(x, t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x} \phi(x, t)$$

(D)
$$-\frac{\hbar^2}{2m}\frac{\partial}{\partial t}\varphi(x, t) = i\hbar\frac{\partial}{\partial x}\varphi(x, t)$$

2. The probability current density, $j(\vec{r}, t)$ is given by :

(A)
$$\frac{i\hbar}{2m} (\Psi \nabla \Psi^{+} - \Psi^{*} \nabla \Psi)$$

- 3. A particle constrained to move along x-axis in the domain $0 \le x \le L$ has a wave function $\Psi(x) = \sin\left(\frac{n\pi x}{L}\right)$, where n is an integer. Find the normalization constant.
 - (A) √2
 - (B) $\sqrt{\frac{1}{L}}$
 - (C) $\sqrt{\frac{L}{2}}$
 - (D) $\sqrt{\frac{2}{L}}$
 - 4. The mathematical representation of a spherical wave travelling outwards from a point is given by Ψ(r) = A/r e^{ikr}, where A is a constant and k is the wave vector. Find the expression for the probability current density:
 - (A) $\frac{\hbar k}{mkr^2} |\mathbf{A}|^2$
 - (B) $\frac{hk}{mr^2} |A|^2$
 - (C) $\frac{\hbar^2 k}{kr^2} |\mathbf{A}|^2$
 - (D) $\frac{\hbar k}{mr} |\Lambda|^2$

5. The phase velocity of a relativistic particle of rest mass m₀, having de Broglie wavelength λ is :

(A)
$$c \left(\frac{1 + m_0^2 c^2 \lambda^2}{h^2} \right)^{1/2}$$

(B)
$$c \left(\frac{1 - m_0^2 c^2 \lambda^2}{h^2} \right)^2$$

(C)
$$c \left(\frac{1 - m_0^2 c^2 \lambda^2}{h^2} \right)^{1/2}$$

(D)
$$c \left(\frac{1 + m_0^2 c^2 \lambda^2}{h^2} \right)^2$$

Electrons of energy 12.09 eV can cause rediation to be emitted from a hydrogen

atom. Find the principal quantum number of the orbit to which electron in

the hydrogen atom is excited:

(A) 5

(B) 4

(C) 3

(D) 2

7.	The density and atomic weight of b	hydrogen are 0.08898 kg/m ^o and 1.0078	37,
3	respectively. What is the density	(in kg/m ³) of nitrogen of atomic weig	ht -
	14.0067 ?		
	2 1 T		
	(A) 2,426	(B) 1.236 -	
	(C) 1.007	(D) 0.976	
70		PARK CONTRACTOR FOR A CONTRACTOR AND ADDRESS OF A CONTRACTOR A	P(#05)
8.	What is the magnetic moment (in	amp-m ²) associated with the first orbit	in
	9950 SID 77 W		
	the case of hydrogen atom?		
	(A) 2.31×10^{-32}	(B) 3.23 × 10 ⁻³³	
	(C) 9.27 × 10 ⁻³⁴	(D) 0.27 × 10 ⁻³⁴	
	(0) 0.41 2 40	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		. 1 11 and two o	her
9.	A photon of wavelength 140 nm is	s absorbed by mercury vapour and two o	WARE A
	photons are emitted. If one of ther	m is of 185 nm line, what is the waveler	ngth
	of the other photon ?		
	(A) 375.3 nm	(B) 413.7 nm	Ť
	(C) 437.9 nm	(D) 575.2 nm	

10.	Assuming an overlap interaction between no		
	$\varphi(r) = \text{Bexp}\left(-\frac{r}{\rho}\right)$, where B and ρ are constant	ts, find the equilibrium spac	ing
	r_0 in terms of B and p.	- 1	

(A)
$$\frac{1}{3}\rho \log_e B$$

(C) $\frac{2}{3}\rho \log_e B$

(C)
$$\frac{2}{3}\rho \log_e B$$

(D)
$$\frac{3}{2} \rho \log_e B$$

How many photons of radiation of wavelength $5 imes 10^{-12}$ metre must fall per 11. second on a blackened plate to produce a force of one dyne?

(A)
$$7.6 \times 10^{21}$$

(B)
$$3.6 \times 10^{23}$$

(C)
$$4.9 \times 10^{25}$$

(D)
$$5.6 \times 10^{27}$$

An X-ray tube passes 10 mA current at a potential difference of 150 kV. Find the rate at which the target is being heated if only 1% of the incident energy is converted into X-rays.

1785 W

AP(AS&H) Phy.-3/2014

13.	The mass absorption coefficien	t of iron for X-rays of wavelength 0.013	nm
	is 0.04 m ² /kg. What thickness o	of iron is required to reduce the X-ray intens	sity
	to 1/1000 of its original value	? Take, density of iron = 8000 kg/m ³ .	
	(A) 0.02 m	(B) 0.05 m	
			5
	(C) 0.07 m	(D) 0.09 m	
		76 , 44	
14.	Find the de Broglie waveleng	th of a 10 eV electron.	
	(A) 0.543 nm	(B) 0.488 nm	
	MW (MISSS 1999)		
	(C) 0.388 nm	(D) 0.198 nm	
	(0) 0,000	ä	- 79
15	A beam of neutrons with energ	gies ranging from zero to several electron v	rolts
15.	A penn (a negation ates overs)	6-14 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	is directed at a crystal with a gr	rating space of 0.303 nm. Find the angle betv	veen
	the incident beam and the er	ystal so that the reflected neutrons will l	have
			1.50
	a kinetic energy of 0.1 eV.		
		Secretary Company Comp	
	(A) $\sin^{-1}(0.23)$	(B) $\sin^{-1} (0.15)$	
	(C) \cos^{-1} (0.09)	(D) $\cos^{-1} (0.25)$	
AD	(AS&H) Phy3/2014	- 7	.T.O.
13.1	This court is the state of the	W 350	

						15	to and and	c the
16.	If a pr	oton is co	nfined to	a nucleus	of radius 5	× 10 ⁻³⁰ m	etre, what	18 11118
						3		
	value	of its min	imum kin	etic energ	y ?			
		. 650020044						
	(A) 0	.21 MeV				9		
.4								
		ngo Mat			2			
	(B) ().32 MeV		**	- 2			
			6				9.77	
	100	0.45 MeV						
	101	0,40						
	(D)	0.17 MeV						
	1.00	2016 - NO. 101						
				10 Co. Av.		i. Il malle se	narated by	1.0 nm
17.	An e	lectron is c	confined to	move bety	veen two rig	Id wans or	parame	
						- 2	9 3	NIGHT -
	Find	the de Br	oglie wav	elengths re	presenting t	he first th	ree anowed	etter
	2. 38464	CONTRACTOR OF THE STATE OF THE	50. C.		(#)			
	(X IV)	e 0	Jackson 0	nd the cor	responding	energies ?		
	state	es of the	election a	ind this con				
	(4)	1.2 nm,	0 83 nm.	0.45 nm				9 3
	(A)	1,2 1111,	WALLEY AND THE	W. New York Street, St	V 2			
					4			
	(B)	5.6 nm,	3.6 nm, 2	2.3 nm				
	1201							
				ocean com				
	(C)	2.0 nm,	1.0 nm, (0.67 nm				
	7							
				0.00				
	(D)	0.68 nn	ı, 0.53 nn	ı, 0.33 nm				
A	P(AS&I	H) Phy3/	2014		8 -			
_								

-4

21.	A particle of mass 1.0 µgm is con	fined to move between two right w	walls separated
	by a distance of 0.1 mm. If the	particle requires 100s to cross	the gap. What
100	quantum number describes th	us motion ?	*
	(A) 10 ¹²	(B) 2 × 10 ¹³	
	(C) 3 × 10 ¹⁴	(D) 4 × 10 ¹⁵	
22.	The Fermi energy of silver is	5.51 eV. What is the average	energy of the
	free electrons in silver at 0 l	K. ?	
	(A) 6.93 eV	(B) 5.03 eV	
¥	(C) 4.13 eV	(D) 3.31 eV	
23.	At what frequency will there be	e a 0.01% change in the conductiv	ity of a material
	from the static value if the	relaxation time is of the order	of 10 14 sec.
	(A) 160 GHz	(B) 279 QHz	
	(C) 382 GHz	(D) 523 GHz	
AP((AS&H) Phy3/2014	10	

The variation of $\ln \sigma$ of a semiconductor with T^{-1} is shown in the figure (symbols have their usual meanings). Find the band gap.

27.

28. An electric field of 100 V/m is applied to a sample of n-type semiconductor whose Hall coefficient is -0.0125 m³/coulomb. Find the current density in the sample, assuming μ_n = 0.36 m²V⁻¹s⁻¹.

32. A particle of mass m moves under the influence of the potential $V(x) = \frac{A}{x^2} - \frac{B}{x}, \text{ where } A, B > 0. \text{ Find the frequency of small oscillations}$ around the equilibrium point :

(A)
$$\sqrt{\frac{B^2}{8 m A^2}}$$

(B)
$$\sqrt{\frac{B^4}{8 m A^3}}$$

.. (C)
$$\sqrt{\frac{8B^4}{3 mA^3}}$$

(D)
$$\sqrt{\frac{A^3}{3 m B^4}}$$

33. A mass m with speed v approaches a stationary mass M. The masses bounce off each other without any loss in total energy. What are the final velocities of the particles?

(A)
$$v_m = \frac{m - M}{m + M}v$$
; $v_M = \frac{2mv}{m + M}$

(B)
$$v_m = \frac{m + M}{m - M}v; v_M = \frac{2mv}{m - M}$$

(C)
$$v_m = \frac{2mv}{m+M}v$$
; $v_M = \frac{m-M}{m+M}$

(D)
$$v_m = \frac{m - M}{m + M}v$$
; $v_M = \frac{2 Mv}{m + M}$

34. Sand drops vertically from a negligible height at a rate σ kg/s onto a moving conveyor belt. If the conveyor belt is forced to move at a constant speed v, how much energy is lost to heat per unit time?

(A)
$$\frac{\sigma v^2}{2}$$

(B)
$$\frac{\sigma v^2}{3}$$

(D)
$$\frac{\sigma v^2}{6}$$

35. The Lagrangian of a particle of mass m sliding off a fixed frictionless hemisphere of radius R (shown in figure) is

(A)
$$L = m R \dot{\theta}^2 - mg R \sin \theta$$

(B)
$$L = \frac{1}{2} m R \dot{\theta}^2 - mg R \sin \theta$$

(C)
$$L = \frac{1}{2} m R^2 \dot{\theta}^2 - mg R \cos \theta$$

(D)
$$L = \frac{1}{2} m R \theta^2 - \frac{1}{2} mg R \cos \theta$$

36. Consider a mass m on a spring, with relaxed length zero, in the x-y plane. The Lagrangian $L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) - \left(\frac{k}{2}\right)(x^2 + \dot{y}^2)$, is invariant under the change of coordinates, $x \to x + \in y$ and $y \to y - \in x$, to first order in \in . Find the conserved momentum.

(A)
$$m(x\hat{y} - y\hat{x})$$

(B)
$$m(\dot{x}y - \dot{y}x)$$

(C)
$$m(\dot{x} + \dot{y})$$

(D)
$$m(3\dot{x} + 3\dot{y})$$

37. The inertia tensor for a solid cube of mass M and side length L, with the coordinate axes parallel to the edges of the cube and the origin at a corner, is:

(A)
$$ML^2$$

$$\begin{pmatrix} \frac{2}{3} & -\frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{2}{3} & -\frac{1}{4} \\ -\frac{1}{4} & -\frac{1}{4} & \frac{2}{3} \end{pmatrix}$$

(B)
$$ML^2$$

$$\begin{pmatrix} -\frac{1}{4} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{4} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{4} \end{pmatrix}$$

(C)
$$\frac{1}{2}$$
ML² $\begin{pmatrix} \frac{2}{3} & -\frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{2}{3} & -\frac{1}{4} \\ -\frac{1}{4} & -\frac{1}{4} & \frac{2}{3} \end{pmatrix}$

(D)
$$\frac{1}{2}$$
ML²
$$\begin{pmatrix} -\frac{1}{4} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{4} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{4} \end{pmatrix}$$

Two trains, A and B each have proper length L and move in the same direction A's speed is 4c/5 and B's speed is 3c/5. A starts behind B. How long, as viewed by an observer on the ground, does it take for A to overtake B?

(A)
$$\frac{L}{c}$$

38.

(B)
$$\frac{3I}{c}$$

(C)
$$\frac{5L}{c}$$

(D)
$$\frac{7L}{c}$$

39. A particle of mass M and energy E decays into two identical particles A and B. In the lab frame, A and B are emitted, as shown. What are the energies of the created particles?

(A)
$$E_A = \frac{M^2}{2E}$$
; $E_B = \frac{2E^2 - M^2}{2E}$

(B)
$$E_A = \frac{2E^2 - M^2}{2E}$$
; $E_B = \frac{M^2}{2E}$

(C)
$$E_A = M$$
; $E_B = E - M$

(D)
$$E_A = \frac{M^2}{E}; E_B = \frac{E^2 - M^2}{E}$$

40. A particle of mass m acted upon by a restoring force $F = -mk/x^3$ towards the centre of the force O, where x is the distance of the particle from O and k the force constant. If the particle begins its motion from a point at a distance

d from O, how much time it will take to reach at O?

(A)
$$\frac{d^4}{k}$$

(B)
$$\frac{d^2}{\sqrt{k}}$$

(C)
$$\frac{d}{k^{1/4}}$$

(D)
$$\frac{d}{k}$$

41. The electromagnetic force experienced by a particle having charge q and moving with velocity $\stackrel{\rightarrow}{v}$ in an electric field $\stackrel{\rightarrow}{E}$ and magnetic field $\stackrel{\rightarrow}{B}$ is :

(A)
$$\overrightarrow{F} = q(\overrightarrow{E} - \overrightarrow{v} \times \overrightarrow{B})$$

(B)
$$\overrightarrow{\mathbf{F}} = q(\overrightarrow{\mathbf{E}} - \overrightarrow{\mathbf{B}} \times \overrightarrow{v})$$

(C)
$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

(D)
$$\vec{F} = q(\vec{B} - \vec{v} \times \vec{E})$$

42. For the potential energy $U=\frac{1}{r}+\frac{\dot{r}^2}{rc^2}$, the expression for the corresponding force is :

(A)
$$\mathbf{F} = \frac{1}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} - \frac{2r\ddot{r}}{c^2} \right)$$

(B)
$$F = \frac{1}{r^2} \left(1 - \frac{\dot{r}^2 - r\dot{r}}{c^2} \right)$$

(C)
$$F = \frac{1}{r^2} \left(1 + \frac{\dot{r}^2 - 2r\dot{r}}{a^2} \right)$$

(D)
$$F = \frac{1}{r^2} \left(1 + \frac{\dot{r}^2 - 2r\dot{r}}{c^2} \right)$$

43. A planet is revolving around the sun in an elliptical orbit with semi-major axis 'α' and semi-minor axis 'δ'. The ratio of the maximum and the minimum speeds of the planet is:

(A)
$$\frac{a+b}{a-b}$$

(B)
$$\frac{\sqrt{a^2 - b^2}}{\sqrt{a^2 + b^2}}$$

(C)
$$\frac{a - \sqrt{a^2 + b^2}}{a + \sqrt{a^2 - b^2}}$$

(D)
$$\frac{a + \sqrt{a^2 - b^2}}{a - \sqrt{a^2 - b^2}}$$

44. A particle of mass m is thrown vertically upward with a velocity u from the earth's surface. If the frictional force of the air is mkv² (where v is the instantaneous velocity and k the force constant), the time taken by the particle to reach the highest point is:

(A)
$$\frac{1}{\sqrt{gk}} \tan^{-1} \left(\frac{u\sqrt{k}}{\sqrt{g}} \right)$$
 (B) $\frac{1}{\sqrt{gk}} \sin^{-1} \left(\frac{u\sqrt{k}}{\sqrt{g}} \right)$

(C)
$$\frac{1}{gk} \tan^{-1} \left(\frac{u\sqrt{k}}{\sqrt{g}} \right)$$
 (D) $\frac{1}{gk} \sin^{-1} \left(\frac{u\sqrt{k}}{\sqrt{g}} \right)$

45. Two particles P and Q of masses m₁ and m₂ respectively, move under their gravitational attraction (as shown). The Lagrangian equations for the motion of these particles are:

$$\leftarrow x_1 \longrightarrow$$

(A)
$$\ddot{x}_1 = \frac{Gm_2}{(x_2 - x_1)^2}$$
; $\ddot{x}_2 = \frac{Gm_1}{(x_2 - x_1)^2}$

(B)
$$\ddot{x}_1 = -\frac{Gm_2}{(x_2 - x_1)^2}$$
; $\ddot{x}_2 = \frac{Gm_1}{(x_2 - x_1)^2}$

(C)
$$\vec{x}_1 = -\frac{Gm_1}{(x_2 - x_1)^2}; \ \vec{x}_2 = -\frac{Gm_2}{(x_2 - x_1)^2}$$

(D)
$$\ddot{x}_1 = \frac{Gm_1}{(x_2 - x_1)^2}; \ \ddot{x}_2 = -\frac{Gm_2}{(x_2 - x_1)^2}$$

46. The Lagrangian of a particle is given by $L = \frac{1}{2}m\left(\dot{r}^2 + r^2\dot{\theta}^2\right) - V(r)$. Find the generalized momenta.

(A)
$$p_r = \frac{1}{2}m\hat{r}; p_\theta = \frac{1}{2}mr^2\hat{\theta}$$

(B)
$$p_r = \frac{3}{2}m\dot{r}; p_0 = \frac{1}{2}mr^2\dot{\theta}$$

(C)
$$p_r = m\dot{r}; p_0 = mr^2\dot{\theta}$$

(D)
$$p_r = \sqrt{2} m\dot{r}; p_{\theta} = \sqrt{2} mr^2\dot{\theta}$$

47. Which of the following properties is satisfied by Poisson brackets?

(A)
$$[f, g]_{q,p} = -[g, f]_{q,p} = [g, f]_{p,q}$$

(B)
$$[f, e]_{q,p} \neq 0$$
, c is a constant

(C)
$$[f_1 + f_2, g]_{q,p} = [f_1, g]_{q,p} = [g, f_2]_{p,q}$$

(D)
$$\frac{\partial}{\partial t} [f, g]_{q,p} \neq \left[\frac{\partial f}{\partial t}, g \right]_{q,p} + \left[f, \frac{\partial g}{\partial t} \right]_{q,p}$$

A.92	Tf a	particle	describes	an	orbit r	$=ae^{b\theta}$,	the	force	on	it	varies	as	٠
THE .	11	Janes -							-		12		

(A) $\frac{1}{r}$

(B) $\frac{1}{r^2}$

(C) $\frac{1}{r^3}$

(D) $\frac{1}{r^4}$

49. For a particle moving under the inverse square law of force, with kinetic energy T and potential energy V, which of the following relations is satisfied by T and V?

(A) 2T + V = 0

(B) T + V = constant

(C) T + V = 0

(D) T - V = 0

50. The half-life time of a radioactive particle measured in the laboratory is 4.0×10^{-8} s when its speed is 0.8c. Find the half-life time when its speed is 0.6c.

(A) 8.0×10^{-8} s

(B) 4.0×10^{-8} s

(C) 3.0×10^{-8} s

(D) 2.2×10^{-8} s

51. At what speed a clock should be moved so that it may appear to lose 1 minute in each hour?

(A) $5.5 \times 10^7 \text{m/s}$

(B) $5.6 \times 10^6 \text{m/s}$

(C) $3.9 \times 10^5 \text{m/s}$

(D) 2.6 × 10⁴m/s

- 52. Find the velocity of an electron so that its momentum is 10 times that of the product of its rest mass and the speed of light (c):
 - (A) 0.563c

(B) 0.695c

(C) 0.837¢

- (D) 0.995c
- 53. A point P is represented in the (x₁, y₁, z₁) system by P(1, 2, 3). In another coordinate system, the same point is represented as P(x'₁, y'₁, z'₁) where y₁ has been rotated towards z₁ around the x₁-axis by an angle of 30°. Find the rotation matrix:

(A)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$

(B)
$$\begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$

(C)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

(D)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

- 54. Two position vectors are represented in cartesian coordinates as $\vec{A} = \hat{i} + 2\hat{j} 2\hat{k}$ and $\vec{B} = 4\hat{i} + 2\hat{j} 3\hat{k}$. Find the angle between \vec{A} and \vec{B} .
 - (A) 90°

(B) 60°

(C) 45°

(D) 30°

55. Consider the one-dimensional potential, $U(x) = \frac{-wd^2(x^2 + d^2)}{x^4 + 8d^4}$. Find the

turning points for $E = -\frac{w}{8}$. The value of w is positive.

(A) $\pm 2\sqrt{2}d$, 0

(B) $\pm 2\sqrt{2}d$, 1

(C) ±2√2d, ±d

(D) 2√2d, 0

56. A sawtooth driving force function is shown in the figure. Express F(t) as a Fourier series :

- (A) $F(t) = \frac{A}{\pi} \left[\sin \omega t \frac{1}{2} \sin 2\omega t + \frac{1}{3} \sin 3\omega t \dots \right]$
- (B) $F(t) = A \left[\sin \omega t + \frac{1}{2} \sin 2 \omega t + \frac{1}{3} \sin 3 \omega t + \dots \right]$
- (C) $F(t) = \frac{A}{\pi} \left[\sin \omega t \sin 2 \omega t + \sin 3 \omega t + \dots \right]$
- (D) $F(t) = A \left[\sin \omega t \frac{1}{2} \sin 2 \omega t + \frac{1}{3} \sin 3 \omega t \dots \right]$

Halley's comet, which passed around the sun in 1986, moves in a highly elliptical orbit with an eccentricity of 0.97 and a period of 76 years. Find its maximum distance from the sun. (Given mass of the sun = 2.0×10^{30} kg; G = 6.7×10^{-11} Nm²/kg²).

(A)
$$6.9 \times 10^{15}$$
m

57.

(B)
$$6.2 \times 10^{13}$$
m

(C)
$$5.3 \times 10^{12} \text{m}$$

(D)
$$2.9 \times 10^{11} \text{m}$$

58. For the common base circuit, as shown, find the values of Ic and VCB.

(Take : $V_{BE} = 0.7V$)

(A) 4.9 mA; 12.2 V

(B) 3.2 mA; 10.6 V

(C) 2.5 mA; 8.8 V

(D) 1.9 mA; 5.7 V

59. Group the following nuclei as isotones:

$$^{12}_{6}\mathrm{C}, ^{18}_{6}\mathrm{C}, ^{14}_{7}\mathrm{N}, ^{14}_{8}\mathrm{O}, ^{15}_{7}\mathrm{N}, ^{15}_{8}\mathrm{O}, ^{16}_{6}\mathrm{C}, ^{16}_{8}\mathrm{O}, ^{17}_{7}\mathrm{N}, ^{17}_{8}\mathrm{O}$$

- (A) ${}^{15}_{7}$ N, ${}^{15}_{8}$ O
- (B) 18C, 14N, 15O
- (C) 17N, 17O
- (D) 14 O, 15 O, 16 C

60. A singly charged positive ion is accelerated through a potential difference of 1000 V in a mass spectrograph. It then passes through a uniform magnetic

field B = 1500 Gauss, and then deflected into a circular path of radius 0.122 m.

What is the mass number of the ion?

(A) 8

(B) 12

(C) 16

(D) 40

61. For the mirror nuclei ²³Na and ²³Mg, the approximate value of the Coulomb coefficient is:

$$M(^{28}_{11}Na) = 22.989 \text{ amu, } M(^{23}_{12}Mg) = 22.994 \text{ amu, } M(n) = 1.008 \text{ amu, }$$

M(p) = 1.007 amu

(A) 0.13 MeV

(B) 0.36 MeV

(C) 0.49 MeV

(D) 0.66 MeV

62. On the basis of shell model, the magnetic moment (in the units of nuclear magneton) of ¹⁹Ne nucleus is :

(A) 4.79

(B) 3.76

(C) 2.29

(D) 1.76

63. Which of the following reactors produced maximum neutron flux?

(A) Apsara

(B) Zerlina

(C) Dhurva

(D) Kamini

64.	The scattering of an energe	etic charged particle in matter is mostly due to
	interaction with:	
202	ALL SANDERS AND	
	100	The second of th
	(A) electrons	(B) pions
		(D) quarks
	(C) nuclei	
65.	An X-ray photon of freque	ency 3.2×10^{19} Hz collides with an electron and
COUNCE		
e:	gets scattered through 6	0°. What is the frequency (in Hz) of scattered
	photon ?	
	(A) 9.92 × 10 ¹⁹	(B) 2.47 × 10 ¹⁹
	(C) 1.02 × 10 ¹⁸	(D) 6.28 × 10 ¹⁷
		Section and the section of the secti
66	. Find the velocity of ele-	ctrons having kinetic energy of 1.022 MeV using
	CONTRACTOR CONTRACTOR	
100	relativistic consideration	S :
		(B) 0.92 c
	(A) 0.94 c	
	(C) 0.89 c	(D) 0.82 c
	(0) 0,00 0	
A	P(AS&H) Phy3/2014	28

67. In a 70 MeV betatron synchrotron, the radius of the stable orbit is 28 cm.

Find the value of magnetic field at this orbit for the given energy :

(A) 0.64 T

(B) 0.72 T

(C) 0.83 T

(D) 0.91 T

68. Arrange the following particles according to thier masses, greatest first :

$$p, \Lambda^0, \Sigma^0, \Xi^-$$

- (A) Ξ⁻, Σ⁰, Λ⁰, p
- (B) p, Λ⁰, Σ⁰, Ξ⁻
- (C) Λ⁰, p, Ξ, Σ⁰
- (D) Λ⁰, Ξ⁻, Σ⁰, p

69. What is the quark composition of Σ^- ?

(A) uus

(B) uda

(C) dds

(D) uss

70. Which of the following is satisfied by the Pauli matrices σ_i ?

(A)
$$\sigma_i \sigma_j + \sigma_j \sigma_i = 2\sigma_k$$

(B)
$$\sigma_i \sigma_j - \sigma_j \sigma_i = 2i\sigma_k$$

(C)
$$\sigma_i \sigma_j - \sigma_j \sigma_t = 2\sigma_k$$

(D)
$$\sigma_i \sigma_j + \sigma_j \sigma_i = 2i\sigma_k$$

71. Image of |z+1| under the mapping $w=\frac{1}{z}$ is:

(A)
$$2v + 1 = 1$$

(B)
$$2v - 1 = 0$$

(C)
$$2u + 1 = 0$$

(D)
$$2u - 1 = 0$$

72. Using the method of residues, find the value of $\frac{d}{dt} = \frac{1}{\sinh z} dz$ where c is the

circle
$$|z| = 4$$
:

73.	A sample of certain element is placed in a magnetic field of $0.6~\mathrm{T}$ and suitably
	excited. How far apart are the Zeeman components of the 450 nm spectral
	line of this element ?
	(A) 0.00566 nm (B) 0.00632 nm
	(C) 0.00715 nm (D) 0.00856 nm
74.	The operator $\ \phi \Join \phi\ $ is a projection operator only when :
2 AB	(A) φ > is not normalized
	(B) φ > is purely imaginary
	(C) $\mid \phi > \text{ is real}$.
	(D) [φ > is normalized
75.	If 'a' and $\mid \phi >$ are, respectively, the eigen value and eigen function of an
	operator O , the eigen value of an operator e^{io} for the same eigen function
	would be :
	(A) ia (B) a
	(C) $e^{i\alpha}$ (D) e^{α}
AP(A	S&H) Phy3/2014 31 P.T.O.

- 76. A generator develops 200 V and has an internal resistance of 100 Ω. Find the efficiency of the generator if the power is delivered to a lead of 300 Ω.
 - (A) 25%

(B) 50%

(C) 75%

- (D) 100%
- 77. An a.c. supply of 230 V is applied to a half-wave rectifier circuit through a transformer of turn ratio 10: 1. Find the output d.c. voltage.
 - (A) 5.49 V

(B) 7.13 V

(C) 10.36 V

- (D) 11.52 V
- 78. A 7.2 V zener is used in the circuit, as shown, and the load current is to vary from 12 to 100 mA. Find the value of series resistance R to maintain a voltage of 7.2 V across the load. The input voltage is constant at 12 V and the minimum zener current is 10 mA.

(A) 43.5 Ω

(B) 38.1 Ω

(C) 34.3 Ω

(D) 23.8 Ω

79.	When negative voltage feedback is an	oplie	d to an amplifier of gain 100,	the
	overall gain falls to 50. What is	the	fraction of the output volt	age
	feedback ?			đ
	(A) 2	(B)	0.5	
		(72)	0.00	j. 1
	(C) 0.01	(D)	0.02	
80.	The r.m.s. value of carrier voltage is	100	V. After amplitude modulation	ı by
	a sinusoidal a.f. voltage, the r.m.s. val	lue b	ecomes 110 V. Find the modula	tion
	index.			8,
	(A) 0.65	(B)	0.53	
	(C) 0.49	(D)	0.36	
81,	Who was the last ruler of Kangra	princ	ely state ?	
	(A) Ghamand Chand	(B)	Sansar Chand	
	(M) Unamand Onama	1/		
	(C) Anirudh Chand	(D)	Dhruv Dev Chand	
AP(AS&H) Phy3/2014 33		P.	T.O.

82. In which month is Renuka Fa	ir celebrated ?
(A) Kartika	(B) Baishakh
(C) Shrawan	(D) Bhadon
83. Near which place in Bilaspur I	District of H.P. is Markandeya Shrine and holy
spring ?	
(A) Jhandutta	(B) Jeori Pattan
(C) Jukhala	(D) Jagatkhana
84. In which year was the Judi	cial Commissioner's Court in H.P. replaced by
the Delhi High Court ?	
(A) 1963	(B) 1967
(C) 1971	(D) 1972
85. According to 2011 Census	which district of H.P. has the lowest sex ratio
(A) Sólan	(B) Kinnaur
(C) Bilaspur	(D) Chamba
AP/AS&H) Phy3/2014	34

	-(A)	Chandra-Bhaga Valley (B) Doon Valley
	(C)	Kunihar Valley (D) Ralh Valley
87.	Whi	ich one of the following is a domed style temple ?
	(A)	Jawalamukhi (Kangra District)
	(B)	Mrikula Devi (Udaipur, Lahaul-Spiti District)
	(C)	Tripura Sundri (Naggar, Kullu District)
	(D)	Lakshna Devi (Bharmaur, Chamba District)
88.	Who	traced the origin of Pahari language to Dardi and Pishachi?
	(A)	Bhola Nath Tiwari
	(B)	Hardev Bahri
	(C)	G.A. Grierson
	(D)	Govind Chatak
AP(A	S&H)	Phy3/2014 35 P.T.O.

Which region of H.P. is Halda Festival celebrated?

89.	At which educational level is scholarship given to girl students belonging to					
	Balmiki families under Maha	rshi Balmiki Chhatravriti Yojna ?				
	(A) Primary level					
	(B) Elementary level					
	(C) Upto matric level					
	(D) Beyond matric level up	to college level				
90.	With the collaboration of which country was Dhauladhar Farm Forestry Project					
	started in 1980 ?					
	(A) Australia	(B) France	E = 6			
	(C) Germany	(D) USA				
91.	Whom did the Indian men's	Kabaddi team beat in the final of the 17th	Asia			
, 8,	Games held at Incheon, So	oth Korea ?	a a			
35	(A) Afghanistan	(B) Japan				
	(C) Iran	(D) Malaysia				
ΔP	(AS&H) Phy3/2014	36	All I			

95.	Und	Under the old rules of International Hockey Federation there used to be 15					
	mîn	ninutes break after half time. What is the new rule?					
	(A)) Five minutes break after every 15 minutes of play					
	(B)	Five minutes break after first and third quarter of play and 15 minutes					
		break after half time					
	(C)	Five minutes break after first and	th	ird quarter of play and 10 minutes			
		break at half time					
	(D)	Ten minutes break after each qua	ari	er			
96.	At v	vhat age did Malala Yousafzai win	ıt	he 2014 Nobel Peace Prize ?			
	(A)	15 (E	3)	17			
14	(C)	20 (E))	21			
97.	Who	is the author of The Dreams of A	Ay:	Father ?			
	(A)	Varun Gandhi (B)	Vini Mahajan			
	(C)	Barack Obama (D	9	Bilawal Bhutto			
AP(A	S&H)	Phy3/2014 38					

98.	Which country is at number	r one in the g	global slavery	Index of 2014 ?
	(A) China	(B)	India	
	(C) Pakistan	(D)	Nigeria	
99.	To which country did aid w	orker Kassig w	he was helpi	ng Syrian refugses
	in Turkey and whom the Jih	adis claim to b	iave executed	around November,
	2014, belong ?			
1g	(A) France	(B) E	Britain	
	(C) Russin	(D) L	JSA	
100.	In which year was Right Liv	elihood Award	which is trea	ted as alternative
	Nobel Prize instituted ?			R W
	(A) 1980	(B) 19	996	
	(C) 2004	(D) 20	013	
AP(AS	S&H) Phy3/2014	39		P.T.O.