P.T.O.

[Maximum Marks: 100

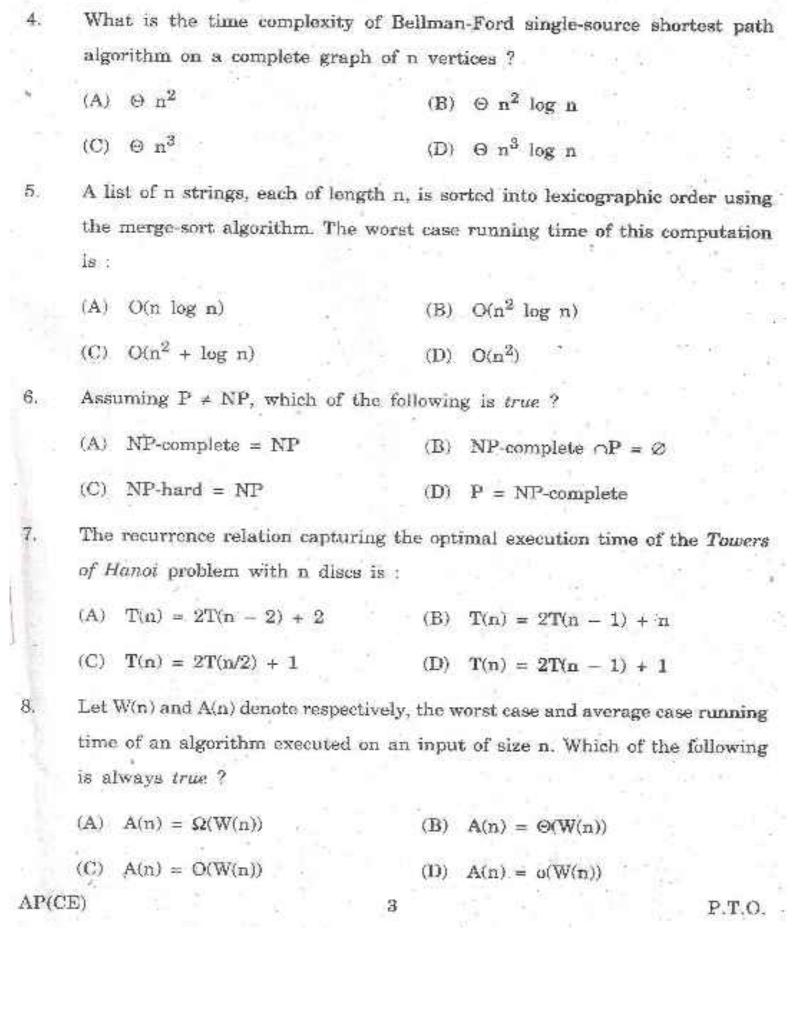
DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

TEST BOOKLET

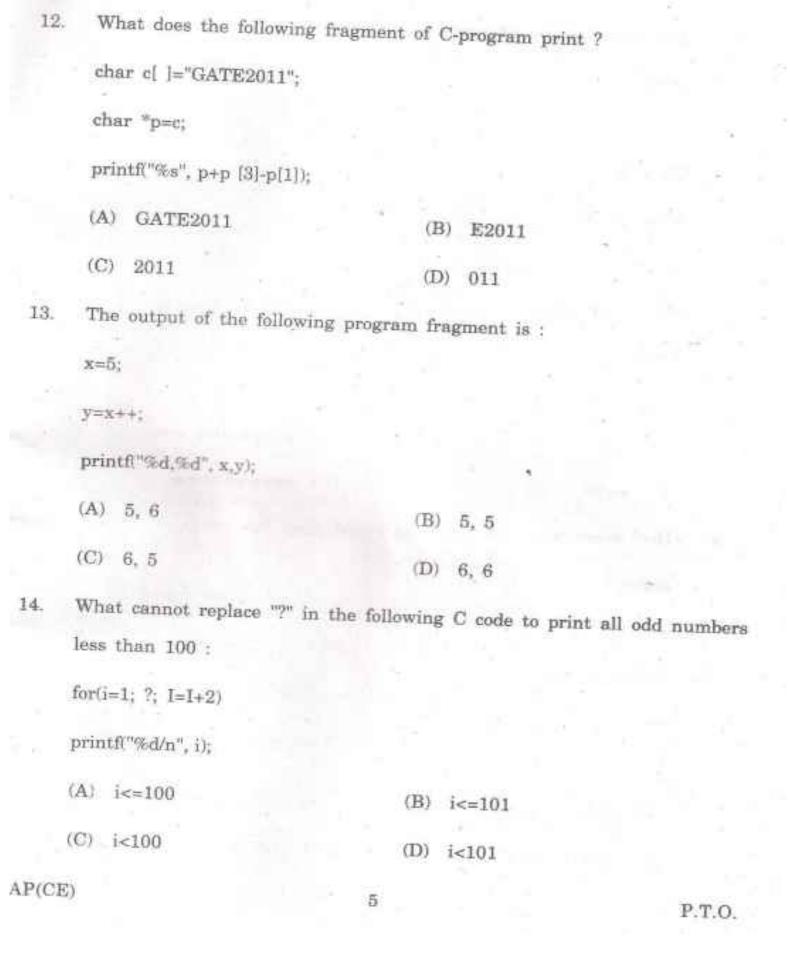
AP (COMPUTER ENGINEERING) (TE) 2014

All questions carry equal marks.

INSTRUCTIONS


Time Allowed : 2 Hours

1,	Immediately after the commencement of the examination, you should check that lest bookiet does not have any unprinted or torn or missing pages or items, etc. If so, get it replaced
	by a complete test bookiet.
2.	Write your Roll Number only in the box provided alongside.
146	Do not write anything else on the Test Booklet. This Test Booklet contains 100 items (questions). Each item comprises four responses
3.	(answers). Chanse only one response for each item which you consider the best.
4.	After the candidate has read each item in the Test Booklet and decided which of the given responses is correct or the best, he has to mark the circle containing the letter of the selected response by blackening it completely with Black or Blue ball pen. In the following
	example, response "C" is so marked :
	(A) (B) (D)
5.	Do the encoding carefully as given in the illustrations. While encoding your particulars or marking the answers on answer sheet, you should blacken the circle corresponding to
- 6	the choice in full and no part of the circle should be left unfilled.
6_	You have to mark all your responses ONLY on the ANSWER SHEET separately given according to INSTRUCTIONS FOR CANDIDATES' already supplied to you. Responses marked on the Test Booklet or in any paper other than the answer sheet shall not be examined.
\overline{I}_{+}	All items carry equal marks. Attempt all items. Your total marks will depend only on the number of correct responses marked by you in the Answer Sheet. There will be no
	negative marking.
8.	Before you proceed to mark responses in the Answer Sheet fill in the particulars in the front portion of the Answer Sheet as per the instructions sent to you.
9.	After you have completed the test, hand over the Answer Sheet to the Invigilator.

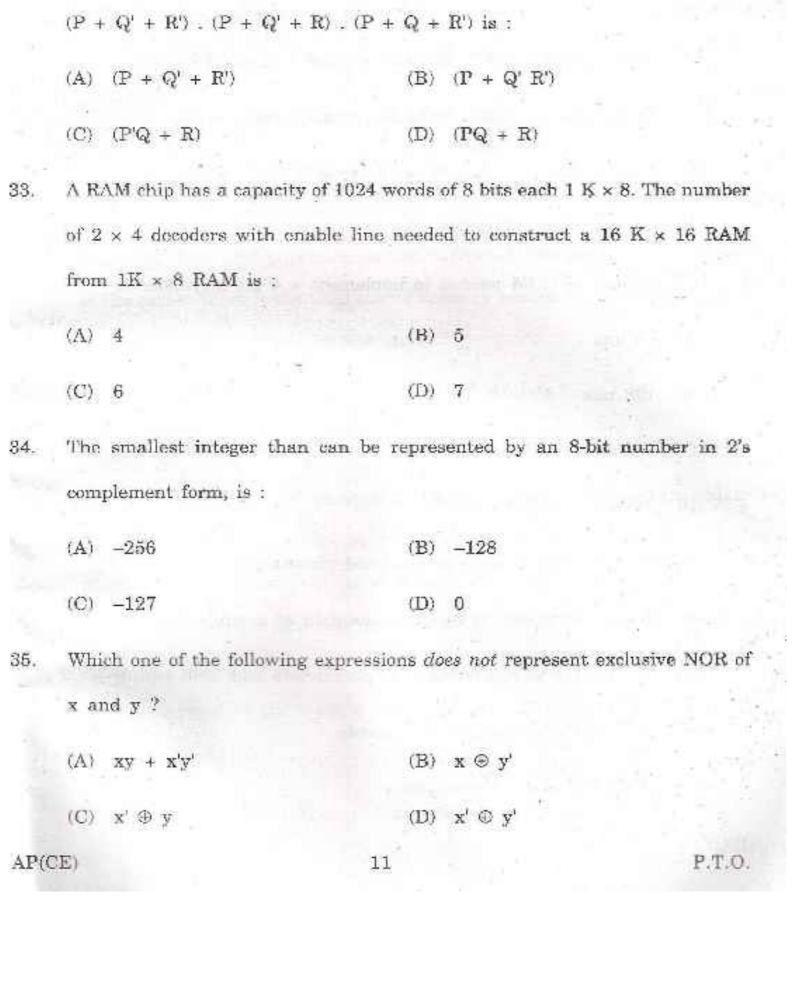

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

AP (COMPUTER ENGINEERING) (TE)

Time	Allowe	d: 2 Hours		100		Maximu	m Marks :	100
1.	Which	one of the following	ng is the tip	ghtest	upper b	ound that	represents	the
		er of swaps require						
	(A) (O(log n)		(B)	O(n)			
	(C) (O(n log n)		(D)	$O(n^2)$			
2.	Which	one of the followi	ng is the ti	ghtest	t upper	oound tha	t represents	the
	time	complexity of ins	erting an	object	into a	binary se	earch tree	of n
	nodes	7						
	(A)	O(1)		(B)	O(log 1	n)		
	(C)	O(n)		(D)	O(n lo	g n)		
3.	Whic	h of the following	statements	are t	rue ?			
	(1)	The problem of dete	ermining wl	nether	there ex	ists a cycle	in an undir	ected
		graph is in P						
	(2)	The problem of det	ermining w	hether	there ex	ists a cycle	e în an undir	ected
		graph is in NP						
	(3)	If a problem A is			ere exist	s a non-d	eterministic	poly-
		nomial time algor	ithm to so					
	(A)	(1), (2) and (3)		(B	(1) aı	nd (2) only	у	
	(C)	(2) and (3) only		Œ)) (1) a	nd (3) onl	у	
AF	(CE)			2				

Which	n is the number	of swaps require	d to	sort n eleme	nt using sele	ection sor
in the	e worst case :	7 7		and through	- 37	
(A)	O(n)		(B)	$\Theta(n \log n)$	die.	
(C)	$\Theta(n^2)$		(D)	$\Theta(n^2 \log n)$)	
In th	e worst case the	number compa	rison	needed to se	arch singly	linked li
is :		-20 h				1
(A)	\log_2 n		(B)	n/2		209
	$log_2 n - 1$		(D)		- 400	
Wha	t will be the ou	tput of the foll	owing	C program	segment ?	
char	inChar='A';				1	
swite	ch (inChar) †			235	11	1
case	'A': printf ("Cl	hoice A");		10		
case	'B':					
case	'C' : printf("Ch	oice B");				Bar.
case	,D, :		17	Maria.	7	
case	E':					
defa	oult : printf("No	choice"); }			A SECUL	4
(A)	No choice					12
(B)	Choice A					
(C)	Choice A Cho	ice B No choice	3).			
(D)	Program gives	s no output as	it is	erroneous		3- 2

The output of the following program segment is : 15. main() int x=0; while(x<=10) for(;;) i(++x%10==0)break; printf("x=%d",, x); (B) compilation error (A) x=1(D) none of these (C) x=20 How many times the following would print "abe" : 16. main() printf("\n abc"); main(); (B) 32767 times (A) infinite number of times (D) till the stack does not overflor (C) 65535 times AP(CE)


17.	W	hat will be the	value of i for	r the follo	wing:			
	in	t f=11, i=3;						
	i+	=(f>3) ? i & 2	: 5;					
	(A) 2		(B)	5			
	(C) 13	4	(D)	12			
18.	An	unrestricted C	OTO stateme	nt is harn	aful becau	ise ;		
	(A)		more difficult					
	(B)	It increases	the running ti	me of the	program			
	(C)	It increases	the memory re	equired to	program			
	(D)	It generates	the compiler (generating	longer n	nachine co	de	
19.		function sprin						
	(A)	data in a file	i 1	(B)	stdrr			
	(C)	stdin		(D)	string	4		
20.	The	goal of structu	red programn	ning is to	1			
	(A)	have well ind	ented program	1			2	
	(B)	be able to inf	er the flow of	control fr	om the co	mpiled pr	rogram	
	(C)	be able to infe						
		avoid the use						
P(C	E)			7	25		- D.1	0.7
							F.,	r.o.

			14000	ne bu taker	by a
21.	What is the maximum number of	reduce in	oves that (an he lake	Co. of
99	bottom-up parser for a Grammar wi	th no epsil	on-and uni	t-production	(1.e., or
	type $A \rightarrow \in$ and $A \rightarrow$ a) to parse	a string	with n toke	ens ?	
	(A) n/2	(B) 2n	-1		
5	(C) n - 1	(D) 2 ⁿ			
22.	In a compiler, keywords of a lang	guage are	recognized	during :	
	(A) parsing of the program				r Ç
	(B) the code generation				
	(C) the lexical analysis of the p	rogram		H 5	
	(D) dataflow analysis				no n escent
23.	In a compiler the module that	checks ev	ery charac	ter of source	e code r
	called:		¥*	.*	1
<i>(</i> 1)	(A) The code generator	(B)	The code of	ptimizer	
	(C) The lexical analyser	(1))	Syntax an	alyser	
24.	. The number of tokens in C pro	gram are	ge Etc.		
	printf("i=%d,&i=%x", i,&i)				
	(A) 3	(B)	26		100
	(C) 10	(D)	21	1	
A	P(CE)	8			

25	In a compiler keywords are recognized during :
	(A) parsing of the program
	(B) the code generation
	(C) the lexical analysis of the program
141	(D) dataflow analysis
26.	Which of the statements is true ?
	(A) SLR parser is more powerful than LALR
	(B) LALR parser is more powerful than canonical LR parser
	(C) Canonical LR parser is more powerful then LALR parser
	(D) The Parser SLR, canonical LR, LALR have same power
27,	Consider the grammar shown below :
	S->CC
	C->eC d
	The grammar is :
	(A) LR(1) but not LALR(1) (B) SLR(1) but not LL(1)
	(C) LALR(1) but not SLR(1) (D) LL(1)
28.	The Grammar A->AA (A) ε is not suitable for predictive parsing because
	the grammar is :
	(A) Ambiguous (B) Left recursive
	(C) Right recursive (D) An operator grammar
AP(C)	E) 9

25.	In	a compiler keywords are rec	gnized	during :
	(A)	parsing of the program		
	(B)	the code generation		
	(C)	the lexical analysis of the	program	n
	(D)	dataflow analysis		
26.	Whi	ich of the statements is true	?	
	(A)	SLR parser is more powerfi	ul than	LALR
	(B)	LALR parser is more power	ful tha	in canonical LR parser
		Canonical LR parser is mor		
		The Parser SLR; canonical		
27.	Cons	sider the grammar shown bel	ow ;	
	S->0	C		
	C->c	C d		
	The	grammar is :		CONTAINS.
	(A)	LR(1) but not LALR(1)	(B)	SLR(1) but not LL(1)
	(C)	LALR(1) but not SLR(1)	(D)	LL(1)
8.	The (Grammar A->AA (A) ε is no	t suita	ble for predictive parsing because
		rammar is :		
	(A)	Ambiguous	(B)	Left recursive
	(C)	Right recursive	(D)	An operator grammar
P(C)	E)	9		P.T.O.

29.	Which of the following is the top down	parser?
	(A) Recursive decent (B	Operator precedence
	(C) An Link) parser	O) Δn LALR(k)
30.	Given the language L - {ab, aa, baa},	which of the following strings are in
	L*. ?	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	(1) abaabaaabaa (2	2) анаавнаян
ă.	(3) baaaaabaaaab	4) baaasabaa
	(A) (1), (2) and (3)	B) (2), (3) and (4)
	(C) (1), (2) and (4)	(D) (1), (3) and (4)
31.	1. Consider the following sequence of m	lero-operations :
	MBR<-PC	
	MAR<-X	
	PC<-Y	
	Memory<-MBR	
	Which one of the following is a p	possible operation performed by this
	sequence ?	
	(A) Instruction fetch	(B) Operand fetch
	(C) Conditional branch	(D) Initiation of interrupt service
A	AP(CE)	

The simplified SOP (sum of product) form of the Boolean expression

36.	The decimal value 0.5 in IEEE single precision floating point representation
	has:
	(A) fraction bits of 000000 and exponent value of 0
	(B) fraction bits of 000000 and exponent value of -1
	(C) fraction bits of 100000 and exponent value of 0
head	(D) no exact representation
37.	The amount of ROM needed to implement a 4 bit multiplier is:
	(A) 64 bits
	(B) 128 bits
	(C) 1 Kbits
	(D) 2 Kbits
38.	Register renaming is done in pipelined processors :
	(A) as an alternative to register allocation at compile time
	(B) for efficient access to function parameters and local variables
	(C) to handle certain kinds of hazards
	(D) as part of address translation
AP	(CE) 12

- 39. An 8KB direct mapped write-back cache is organized as multiple blocks, each of size 32-bytes. The processor generates 32-bit addresses. The cache controller maintains the tag information for each cache block comprising of the following:
 - 1 Valid bit,
 - 1 Modified bit,

As many bits as the minimum needed to identify the memory block mapped in the cache. What is the total size of memory needed at the cache controller to store metadata (tags) for the cache?

(A) 4864 bits

(B) 6144 bits

(C) 6656 bits

- (D) 5376 bits
- 40. An application loads 100 libraries at startup. Loading each library requires exactly one disk access. The seek time of the disk to a random location is given as 10 ms. Rotational speed of disk 6000 rpm. If all 100 libraries are loaded from random locations on the disk, how long does it take to load all libraries? (The time to transfer data from the disk block once the head has been positioned at the start of the block may be neglected);
 - (A) 0.50 s

(B) 1.50 s

(C) 1.25 s

(D) 1.00 s

41	Determine the maximum leng	gth of cable (in km) for transmitting data at a
	rate of 500 Mbps in an Ethern	et LAN with frames of size 10,000 bits. Asserte
	the signal speed in the cable	to be 2,00,000 km/s:
	(A) 1	(B) 2

42. In an IPv4 datagram, the M bit is 0, the value of HLEN is 10, the value of total length is 400 and the fragment offset value is 300. The position of the datagram, the sequence numbers of the first and the last bytes of the payload, respectively are:

(D) 5

(A) Last fragment, 2400 and 2789

(C)

2.5

- (B) First fragment, 2400 and 2759
- (C) Last fragment, 2400 and 2759
- (D) Middle fragment, 300 and 689
- 43. Using public key cryptography X adds a digital signature σ to message M, encrypts <M, σ>, and sends it to Y, where it is decrypted. Which one of the following sequences of keys is used for the operations?
 - (A) Encryption : X's private key followed by Y's private key; Decryption : X's public key followed by Y's public key
 - (B) Encryption : X's private key followed by Y's public key; Decryption : X's public key followed by Y's private key
 - (C) Encryption : X's public key followed by Y's private key; Decryption : Y's public key followed by X's private key
 - (D) Encryption : X's private key followed by Y's public key; Decryption : Y's private key followed by X's public key

AP(CE)

44. Match the program domains in Group I with the solution technologies in Group II:

Group I

Group II

- (P) Services oriented computing
- (1) Interopertability
- (Q) Heterogeneous communicating systems (2)
 - (2) BPMN

(R) Information representation

(3) Publish-find bind

(S) Process description

- (4) XML
- (A) (P)—(1), (Q)—(2), (R)—(3), (S)—(4)
- (B) (P)—(3), (Q)—(4), (R)—(2), (S)—(1)
- (C) (P)-(3), (Q)-(1), (R)-(4), (S)-(2)
- (D) (P)—(4), (Q)—(3), (R)—(2), (S)—(1)
- io. Which one of the following are used to generate a message digest by the network security protocols?
 - (P) RSA

(Q) SHA-1

(R) DES

(S) MD5

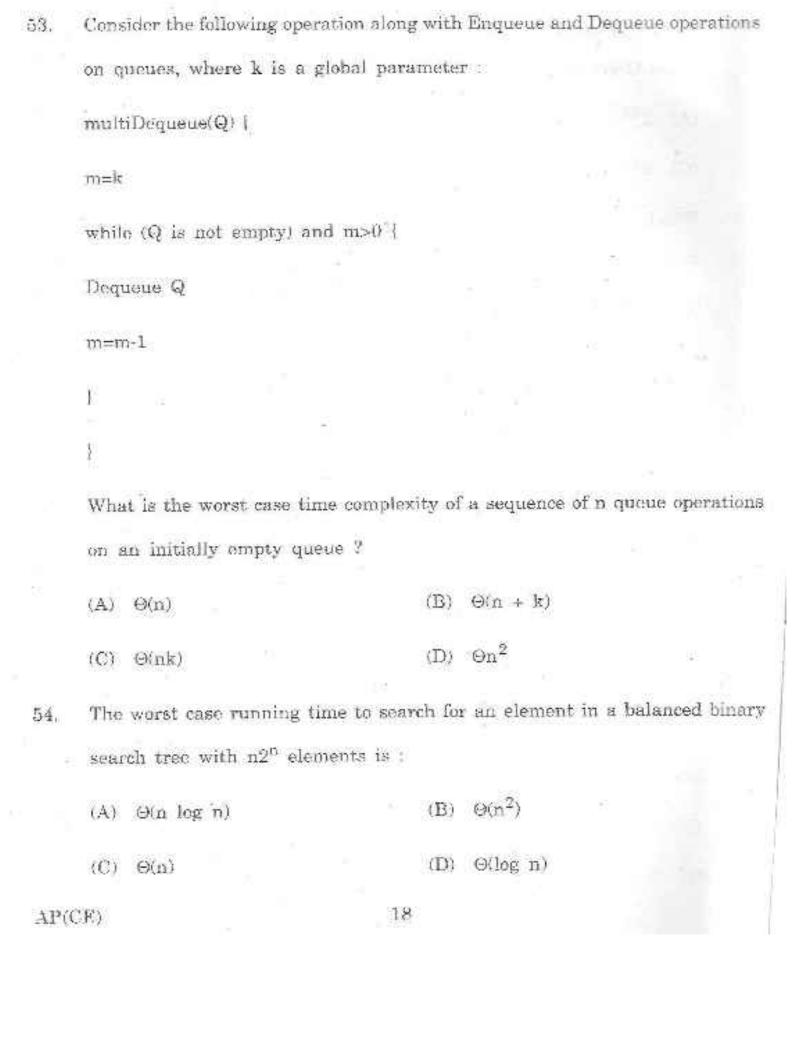
(A) (P) and (R) Only

(B) (Q) and (R) Only

(C) (Q) and (S) Only

(D) (R) and (S) Only

(CE)


15

P.T.O.

46.	The t	transport layer protoc	cols used for real ti	me multimedia	, file transfe	r, DNS	
	and	email, respectively a	ire:		r,		
1.7	(A)	TCP, UDP, UDP at	nd TCP				
	(B)	UDP, TCP, TCP ar	id UDP				
	(C)	UDP, TCP, UDP a	nd TCP		: 8		
	(D)	TCP, UDP, TCP an	id UDP	18			
47.	Assu	ime that source S a	nd destination D	are connected	through tw	o inter-	
	mediate routers labeled R. Determine how many times each packet has to						
	visit the network layer and the data link layer during a transmission from						
	S to	D. S-R-R-D			9		
	(A)	Network layer-4	imes and Data li	nk layer—4 ti	mes		
	(B)	Network layer—4	limes and Data li	nk layer—3 ti	mes	19657	
	(C)	Network layer-4	times and Data li	nk layer -6 ti	mes	250	
11	(D)	Network layer-2	times and Data li	nk layer—6 ti	mes		
48.	The	e protocol data unit (PDU) for the appl	ication layer i	n the Interv	et stack	
	is :		1	110			
	(A)		(B)	Datagram	0 8		
	(C)	Message	(CI)	Frame			
AP	CE)		16	3			
17.55	And the						

	Class C addresses is :			
	(A) 2 ¹⁴	(B)	2^{7}	
	(C) 2 ²¹	(D)	2^{24}	.*1
50.	Which of the following trans	sport layer pro	tocols is used to s	apport electronic
	mail ?			
	(A) SMTP	(B)	IP	
	(C) TCP	(D)	UDP	
51.	In a binary maxheap counti	ng n numbers	the smallest elem-	ont can be found
	in time :			
	(A) Θ(n)	(B)	⊖ log n	
	(C) 9 Gog log n)	(D)	$\Theta(1)$	je .
52.	The preorder traversal sequ	uence of a bin	ary search tree is	s 30, 20, 10, 15,
	25, 23, 39, 35, 42. Which one	of the following	is the postorder to	aversal sequence
	of the same tree ?			
33	(A) 10, 20, 15, 23, 25, 35	, 42, 39, 30		
	(B) 15, 10, 25, 23, 20, 42	, 35, 39, 30		
#	(C) 15, 20, 10, 23, 25, 42	, 35, 39, 30		
	(D) 15, 10, 23, 25, 20, 35	, 42, 39, 30		
AP(CE)	. 17	# E	P.T.O.

In the IPv4 addressing format, the number of network allowed under

55	We are given a set of n	distinct elements and an unlab	eled hinom to the
	n nodes. In how many	vays can we populate the tree	with the given and
	that it becomes a binar	y search tree ?	wish the given set so
		*171	2
	(A) 0	(B) į	0
	(C) n!	(D) $^{2n}C_n$, $1/n+1$	
56.	In what tree for every ne	ode the height of its left subtre	e and right subt
	differ by at least by one		right subtree
	(A) Binary search tree	(B) AVL tree	
	(C) Threaded binary tre	e (D) Complete tree	
57.	An algorithm that will so	t effectively an array that is n	early sorted except
	for the interchange of son	e adjacent pair of numbers lik	e 1, 3, 2, 5, 4, 6 :
	(A) quick sort	(B) bubble sort	
	(C) merge sort	(D) selection sort	
58,	What is the time required	l to insert an element in a s	stack with linked
	implementation ?		macu
8	(A) O(log ₂ n)	(B) O(n)	
	(C) O(n log ₂ n)	(D) O(1)	
AP(CE	E)	19	P.T.O.

59.	Whi	ch of the following is fulse?				
	(A)	Every tree is a bipartite graph	h			
	(B)	A tree contains a cycle				
	(C)	A tree with n nodes contains	(n-1)	edges		
	(D)	Λ tree is a connected graph		0.7	**	29
60.	In a	heap, every element is	of a	ll elements in	the subtree	
	(A)	maximum	(B)	minimum		
	(C)	maximum or minimum	(D)	product		
61.	A s	operkey for an entity consists o	of:			7);
	(A)	one attribute only	(B)	at least two	attributes	
	(C)	at most two attributes	(D)	one or more	attributes	
62.	An	index is clustered, if:				
	(Λ)	it is on a set of fields that for	rm a	candidate ke	у	
	(B)	it is on a set of fields that in	clude	the primary	key	
II.	(C)	the data records of the file are	orgar	nized in the se	ime order as	the data
		entries of the index				
	(D)	the data records of the file are	orga	nized not in t	he same orde	er as the
	r.	data entries of the index		s		
AP(E)	20	i	Ri -		

63. The completeness constraint rule : (A) Supertype, subtype (B) total specialization, partial specialisation (C) specialization, generalization (D) all of the above Consider the following transactions with data items P and Q initialized to 64. zero : T1 : read (P); read (Q); if P = 0 then Q := Qwrite (Q). T2 : read (Q); read (P); if Q = 0 then P := P + 1; write (P). Any non-serial interleaving of T1 and T2 for concurrent execution leads to : (A) a serializable schedule a schedule that is not conflict serializable (C) a conflict serializable schedule (D) a schedule for which precedence graph cannot be drawn

21

P.T.O.

 $\Lambda P(CE)$

- 65. Which of the following is true?(A) Every relation is 3NF is also in BCNF
 - (B) A relation R is in 3NF if every non-prime attribute of R is fully functionally dependent on every key of R
 - (C) Every relation in BCNF is also in 3NF
 - (D) No relation can be in both BCNF and 3NF
 - 66. What is the correct translation of the following statement into mathematical logic ?

"Some real numbers are rational" :

- (A) $\exists x(real(x) \lor rational(x))$
- (B) $\forall x(real(x) \rightarrow rational(x))$
- (C) $\exists x(real(x) \land rational(x))$
- (D) $\exists x(rational(x) \rightarrow real(x))$
- 67. Given the basic ER and relational models, which of the following is incorrect?
 - (A) An attribute of an entity can have more than one value
 - (B) An attribute of an entity can be composite
 - (C) In a row of relational table, an attribute can have more than one value
 - (D) In a row of a relational table, an attribute can have exactly one value or a Null value

- is. Which of the following statements are true about an SQL query ?
 - P : An SQL query can contain a HAVING clause even if it does not have a GROUP by clause
 - Q : An SQL query can contain a HAVING clause only if it has GROUP by clause.
 - R : All attributes used in the GROUP BY clause must appear in the SELECT clause
 - S : Not all attributes used in the GROUP BY clause need to appear in the SELECT clause
 - (A) P and R

(B) P and S

(C) Q and R

(D) Q and S

69. Database table by name Loan_Records is given below :

Borrower	Bank_Manager	Loan_Amount	
Ramesh	Sunderajan	10,000.00	
Suresh	Ramgopal	5,000.00	
Mahesh	Sunderajan	7,000.00	

What is the output of the following SQL query ?

SELECT count(*) FROM((SELECT Borrower, Bank_Manager FROM Loan_Records) AS S NATURAL JOIN (SELECT Bank_Manager, Loan_Amount FROM Loan_Records) AS T);

(A) 3

(B) 9

(C) 5

(D) 6

AP(CE)

23

P.T.O.

- 70. Which of the following statements is true?
 - (A) Ordered indexing will always outperform hashing for both queries
 - (B) Hashing will always outperform ordered indexing for both queries
 - (C) Hashing will outperform ordered indexing on Q1, but not on Q2
 - (D) Hashing will outperform ordered indexing on Q2, but not on Q1-
- 71. A scheduling algorithm assigns priority proportional to the waiting time of a process. Every process starts with priority zero (the lowest priority). The scheduler re-evaluates the process priorities every T time units and decides the next process to schedule. Which one of the following is TRUE if the processes have no I/O operations and all arrive at time zero?
 - (A) This algorithm is equivalent to the first-come-first-serve algorithm
 - (B) This algorithm is equivalent to the round-robin algorithm
 - (C) This algorithm is equivalent to the shortest-job-first algorithm
 - (D) This algorithm is equivalent to the shortest-remaining-time-first algorithm

72. Consider the 3 processes, P1. P2 and P3 shown in the table.

Processes	Arrival Time	Time units Required
P1	Ō	5
P2	1.	7
P3 .	3	4

The completion order of the 3 processes under the policies FCFS and RR2 (round robin scheduling with CPU quantum of 2 time units) are :

- (A) FCFS: P1, P2, P3 RR2: P1, P2, P3
- (B) FCFS: P1, P3, P2 RR2: P1, P3, P2
- (C) FCFS: P1, P2, P3 RR2: P1, P3, P2
- (D) FCFS : P1, P3, P2 RR2 : P1, P2, P3
- 73. A file system with 300 GByte disk uses a file descriptor with 8 direct block addresses, 1 indirect block address and 1 doubly indirect block address. The size of each disk block is 128 bytes and the size of each disk block address is 8 bytes. The maximum possible file size in this file system is:
 - (A) 3 KBytes
 - (B) 35 KBytes
 - (C) 280 KBytes
 - (D) dependent on the size of the disk

AP(CE) 25 P.T.O.

74.	Consider the virtual page demand paged virtual men has main memory size of 3 FIFO and OPTIMAL de corresponding page replace	nory system run page frames whenote the num	nning on a nich are init ber of pa	computer sys cially empty. I	tem that Let LRU,
	(A) OPTIMAL < LRU <	FIFO (B)	OPTIMAL	< FIFO < L	RU
	(C) OPTIMAL = LRU	(D)	OPTIMAL	= FIFO	
75.	A process executes the co	de :		20	
	fork();				
	fork();				
	fork();				
	The total number of child	l processes crea	ted is:	1, 2-	Sec.
	(A) 3	(B)	4		
	(C) 7	(D)	8		
76,	Consider the following tab P0, P1 and P2:	le of arrival time	and burst	time for three	processes
	Process	Arrival Tim	е	Burst Time	
	P0 -	0 ms		9 ms	
	P1	1 ms		4 ms	
	P2	2 ms		9 ms	
	The pre-emptive shortest	job first schedu	aling algorit	hm is used.	Scheduling

The pre-emptive shortest job first scheduling algorithm is used. Scheduling is carried out only at arrival or completion of processes. What is the average waiting time.

(A) 5.0 ms (B) 4.33 ms

(C) 6.33 ms (D) 7.33 ms

AP(CE) 26

77.	A th	read is	usually	defined	as a 'li	ght we	ight proce	ss' beca	use an (perating
	syst	em (OS)	maintai	ns small	er data	structi	res for a	thread tl	han for s	a process.
	In r	elation	to this,	which o	f the f	ollowin	g is true	?		80.55
	(A)	On per	thread	basis, t	he OS	maint	ains only	CPU re	gister s	tate
	(B)	The OS	does r	ot mair	itain a	separa	to stack	for each	thread	
	(C)	On per	thread	basis, t	he OS	does n	ot mainta	in virtu	al mem	ory state
	(1)	On per	thread	basis, th	e QS n	naintai	ns only so	heduling	g and a	ecounting
		informs	ation				4 5			
78.	Let	the page	fault se	rvice tir	ne be 1	0 ms in	a compu	ter with	average	memory
	acce	ss time l	being 20	ns. If o	ne page	fault	is generat	ed for e	very 10 ⁶	memory
	acce	ss, what	is the	effective	access	time	for the m	nemory ?		
	(A)	21 ns	62		- 10	(B)	30 ns			
	(C)	23 ns				(D)	35 ns			
79.	The	register	or mai	n memo	ry locat	tion wh	ich conta	ins the	effective	address
	of t	he opera	nd is k	nown as						
#	(A)	pointer				(B)	special l	ocation		
	(C)	indexed	l registe	er.		(D)	none of	these		
AP(C	E)				2	7				P.T.O.

	(A) Linkage editor	(B)	Interpreter
	(C) Driver	(D)	Spooler
81.	What is the name of the village in	Bilaspu	r District of H.P. where a bus fell
	into Gobind Sagar skilling about	25 pers	ons?
	(A) Gallan	(B)	Rishikesh
	(C) Jeori Pattan	(D)	Rahlyan
82.	How long did the Tibetan scholar	Kin-Char	-Sang-Po stay in Lahaul-Spiti and
	Kinnaur?		
	(A) Seven years	(B)	Thirteen years
	(C) Seventeen years	(D)	Twenty years
83.	What was the expected growth	rate in l	4.P. during the 2013-14 fiscal ?
	(A) 5.5 percent	(B)	5.9 percent
	(C) 6.2 percent	(D)	6.6 percent
84.	During 2013-14 (upto December	2013) wh	at was the total production of fruits
	is H.P. (in lakh tons):		
	(A) 6.57	(B)	7.23
	(C) 7.80	(D)	8.28
AP	(CE)	28	

80. A software to create job queue is called:

35.	How much food grain is provided to	the consumers under the Rajeev Gandhi	
	Ann Yojna in H.P. ?		
	(A) 2 kg Wheat and 2 kg Rice		
	(B) 3 kg Wheat and 3 kg Rice		
	(C) 3 kg Wheat and 2 kg Rice	(+) 29	
	(D) 2 kg Wheat and 3 kg Rice		
86.	In which village of Kinnaur Distri	ct is Chandika Devi temple ?	
	(A) Kothi	(B) Sarahan	
	(C) Sungra	(D) Kamru	
87.	What is the approximate length of	of Himachal's international border with	
	(A) 200 kms	(B) 300 kms	
	(C) 400 kms	(I)) 500 kms	
88.	Which region of H.P. is suitable !	for the cultivation of seed Potato ?	
	(A) Kutlehar	(B) Lahaul	
	(C) Bara Bhangal	(D) Sunder Nagar	
89.	To which category of expectant me	others is free institutional delivery facility	r.
	provided in H.P. under the Matri	i Seva Yojna :	
	(A) to all dalit women	Tr V	
	(B) to all women belonging to l		
	(C) to all women belonging to I	Dalit and BPL families	
0 10	(D) to all wemen irrespective of		
AF	P(CE)	29 P.T.C	

90,	Whie	ch gịrl o	f Hims	chal Pr	adesh	was (the m	nember of Kabbaddi team that won
361	gold	medal	at the	2014 A	sian	Game	e at	Incheon ?
	(A)	Sarita	Thaku	r	٠		(B)	Babita Thakur
	(C)	Kavita	Thaku	Y.			(D)	Namita Thakur
91.	Whit	ch wome	en Polie	e Inspe	etor c	fJ&	Kw	was awarded International Female
	Polic	e Peace	Кеере	er awar	d rece	ently	?	t a
	(A)	Bhakti	Devi				(B)	Shakti Devi
	(C)	Kashi l	Devi				$\langle D \rangle$	Kunti Devi
92.	Who	won ti	ie 2014	Nobel	Prize	in b	Geona	omic Sciences ?
	(A)	Jean T	'irola				(B)	Jean Charles Rochet
	(C)	Bengi	Holmsfi	rom			(D)	Maithias Dewatripont
93.	Who	set up	the In	dian In	istitut	e of	Scien	nce, Bangalore ?
	(<u>A</u>)	Tej Ba	hadur	Sapru			(B)	Jamshed Ji Tata
	(C)	G.D. B	irla				(D)	Shanti Swarup Bhatnagar
94.	Who	becam	e the	Chief	Minis	ster	of Ta	amil Nadu after the ouster of
		ayalalitl				000		
	(A)	Gokula	Indira	2	5		(B)	Natham Roviswanathan
	(C)	Pannee	rselvar	n.			(D)	Ms. Kanimozhi
AP(C)	E)					30		

	(A)	Ashraf Ghani	(B)	Abdullah Abdulla
	(C)	Hamid Karzai	(D)	Badshah Khan
96.	Wha	nt religion did B.R. Ambed	lkar embra	ce after leaving Hindism ?
	(A)	Islam	(B)	Christianity
	(C)	Jainism	(D)	Buddhism
97.	Alex	andro Gustave Eiffel is rei	nembered f	or Eiffel Tower, Paris ? What else
	is h	e known for ?		
	(A)	Suez Canal	(B)	Panama Canal Locks
54 1017	$\langle C \rangle$	Leaving Tower of Pissa	(\mathbf{D})	Le Rove Tunnel
98.	Whi	ch Assembly Constituency	witnessed	highest voter turn out during the
	201	1 elections in Haryana ?		
	(A)	Tohana	(B)	Uchana Kalan
	(C)	Ellenabad	(D)	Sadhaura
*	Who	won the 2014 The Man	Booker Pri	ze ?
	(A)	Richard Flanagan	(B)	Neel Mukherjee
	(C)	Eleanor Catton	(D)	Kiran Desai
0.	Whi	ch Sikh Guru founded the	Golden Te	emple at Amritsar ?
	(A)	Guru Nanak	(B)	Guru Amar Das
	(O)	Guru Ram Das	(D)	Guru Arjan Dev
C	E)		31	P.T.O.

Who is the President of Afghanistan ?