DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

Booklet Serial No. :

0822

TEST BOOKLET SERIES

TEST BOOKLET AE (M)-3/2014

Maximum Marks: 100 Time Allowed: 2 Hours] All questions carry equal marks. INSTRUCTIONS Immediately after the commencement of the examination, you should check that test booklet 1. does not have any unprinted or torn or missing pages or items, etc. If so, get it replaced by a complete test booklet. Encode clearly the test booklet series A, B, C or D as the case may be in the 2. appropriate place in the answer sheet. Write your Roll Number only in the box provided alongside. 3. Do not write anything else on the Test Booklet. This Test Booklet contains 100 items (questions). Each item comprises four responses (answers). Choose only one response for each item which you consider the best. After the candidate has read each item in the Test Booklet and decided which of the given. 5. responses is correct or the best, he has to mark the circle containing the letter of the selected response by blackening it completely with Black or Blue ball pen. In the following example, response "C" is so marked :

- 6. Do the encoding carefully as given in the illustrations. While encoding your particulars or marking the answers on answer sheet, you should blacken the circle corresponding to the choice in full and no part of the circle should be left unfilled.
- 7. You have to mark all your responses ONLY on the ANSWER SHEET separately given according to INSTRUCTIONS FOR CANDIDATES' already supplied to you. Responses marked on the Test Booklet or in any paper other than the answer sheet shall not be examined.
- All items carry equal marks. Attempt all items. Your total marks will depend only on the number of correct responses marked by you in the Answer Sheet. There will be no negative marking.
- Before you proceed to mark responses in the Answer Sheet fill in the particulars in the front portion of the Answer Sheet as per the instructions sent to you.
- 10. After you have completed the test, hand over the Answer Sheet only, to the Invigilator.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

AE (M)-3/2014

Time Allowed: 2 Hours]	Maximum Marks : 100
------------------------	---------------------

- 1. The atmosphere air at dry bulb temperature of 15°C enters a heating coil maintained at 40°C. The air leaves the heating coil at 25°C. The by-pass factor of the heating coil is:
 - (A) 0.376

(B) 0.4

(C) = 0.6

- (D) 0.67
- By-pass factor for a cooling coil :
 - (A) increase with increase in velocity of air passing through it
 - (B) decrease with increase in velocity of air passing through it
 - (C) remains unchanged with increase in velocity of air passing through it
 - (D) may increase or decrease with increase in velocity of air passing through it depending upon the condition of air entering
- 3. In case of sensible cooling of air, the coil efficiency is given by (BPF = by-pass factor):
 - (A) BPF 1

(B) 1 - BPF

(C) 1/BPF

(D) = 1 + BPF

AE (M)-B

					100					
		(A)	dry b	ılb tempera	ture is	higher th	an the wet	bulb temp	perature	
		(B)	dew p	oint temper	ature is	lower th	an the wet	bulb temp	perature	
		(C)	dry b	alb, wet bul	b and d	lew point	temperatur	res are the	same	
		(D)	dry bi	alb tempera	ture is	higher th	an the dew	point terr	perature	
5.		Whi	ch prope	erty of moist	t air re	mains co	nstant durin	ıg adiabati	c cooling ?	
•		(A)	Dry b	ulb tempera	ture	(B)	Specific 1	humidity		
		(C)	Relati	ve humidity		(D)	Wet bulk	temperat	ure '	
6.		An I	C engin	e has a bore	e and st	roke of 2	units each	. The area	to calculat	e
		heat	loss ca	n be taken	as:					
		(A)	4 π			· (B)	бπ	X.		
		(C)	6 π	*		(D)	8 π		10	i
7.	¥.	With	increas	sing tempera	iture of	intake a	ir, IC engir	ne efficienc	у:	
		(A)	decrea	ses		(B)	increases			
		(C)	remain	ns the same		(D)	depends	on other f	actor	
ΑE	(A)	1)—B	3			8			P.T.C),

4. In a saturated air-water mixture, the :

ŝ.	For t	he same m	aximum p	ressure	and hea	t input	(1 -)	1.0	
			+*						3
	(A)	the exhau	st tempera	ture of pe	etrol ene	ine is n	nore than	that of the	diesel.
	14.14		ar manapara				5	+ ,	
		engine			190	20 "			
	70		ŕ					* ",	
*	(P)	the exhau	t t tomerow	toms of A	acal area	ina io w	ora than	that of the	a netrol
*	(B)	the exhaus	st tempera	aute or an	reser eng	ane to n	iore chan	titlett int titt	· Pestron
	-N	engine				74			£
		Cligatic -		4 1					9
	ئەدىد				e Anna Anna	ć	* 	(1 Kl)	- C 21
	(C)	the exhau	st tempera	ature of o	dual cyc	le engu	ne is less	than that	or the
	* *	AF	×						
		diesel eng	ine		74				
	6			7 9			· ·	9	8
	(D)	the exhau	st tempers	iture of c	lual cycl	e engin	e is more	than tha	t of the
,		N	17			,	1.5		
	2	petrol eng	ine				- " A		
						34		*	
9.	If the	compression	on ratio of	an engin	e worki	ng on O	tto cycle i	s increase	ed from
								7.	
	5 to	7, the % a	ge increas	e in effic	ciency w	ill be		. M.	44,
			1 A				4	× 6	
	(A)	4%		•	(B)	8%	e e		20
	9 4					400000	-		a 1.
	(CV)	14%		5	(D)	27%			42
	(C)	J.4:20			(12)	24.76.		4.	
		7		16					,
10.	The	magneto in	an autor	nobile is	basicall	À. t			
F	16					-	1	* 1	
4	(A)	transform	er		(B)	d.c. g	enerator	.00	**
1	× 1				, ,				
	1	magnetie	circuit		(D)	a.c. ø	enerator	(3)	
		Linguene	WALESCONE .	. 1	30.00	SWIEL O	Alberta agree		_ x **
	15	,	63	i i	£	,si	**		i .
4	-	20			**		~	4 10	

11.	Self-	ignition tempera	ture of petrol	is of th	e order of		
	v						
	(A)	150°C		(D)	07000		
		200 0		(B)	370°C		
		ALANA A	4.5			Y 7	
1	(C)	450°C		(D)	more than	1 500°C ⋅	
	98		*			"	
12.	Whic	ch is correct state	ement about r	eaction	time for au	toignition o	of fuel and
	AV.			H	16		or ruct min
t	the f	uel air ratio?	1			×	
	4		7		1,1		Y
((A)	Lean mixture)	nas high rage	tion tim	un.		
			and mgn reac	eton tin	ic.		
	TD3	Di i i i i	*				
((B)	Rich mixture h	as high react	ion time	Э		
					4	· ·	
((C)	Chemically corr	ect mixture h	as min	mum react	ion time	
				*			
()	D)	All of the above	e			+	
			V				
13. F	for so	ma naman and ann				4.	
	01 80	ime power and sar	ne speed, the ii	ywheel d	of a four-stro	ke engine as	compared
ta	O two	o-stroke I.C. eng	ing mill tour		-		
		o-actione 1.C. eng	me will be :				1
						8. 19	
Q	A) -	smaller					1.0
			*	15	3 V		
(H	B)	bigger			20 E		
(C	(C	same size	V 10 mm				
		Sillie Size					
-						- 100	
· (I	J)	dependent on ot	her engine pa	ramete	rs.		
		200	F x				
AE (M)	В		5		35		P.T.O.
						The second secon	A THE COL

14.	The n	naterial used for	coating the	electrod	e is calle	d :		
	(A)	protective layer		(B)	slag			
	(C)	deoxidiser		(D)	flux		7.0	xi
15.	In th	ermit welding, th	ne iron oxide	and al	uminium	oxide are	mixed	in the
	propo	rtion of :						
	(A)	1:1		(B)	3:1			10
	(C)	1:3		· (D)	None of	these	1	
16.	Oxyg	en to acetylene	ratio in case	of neut	ral flame	is:		
			2.4		*			
	(A)	0.8 : 1.0		(B)	1:1			
	(C)	1.2 : 1		(D)	2:1	63		4
17.	The	core in the centa	rifugal castir	ng is ma	de of :			
	(A)	carbon steel	*.	(B)	properl	y treated	sand	
	(C)	abrasive mater	ial	(D)	no core	is used		12 <u>2</u>
AE	(M)—I	3	* * *	6				

18.	Core	prints are used to :
	(A)	strengthen core
	(B)	form seat to support and hold the core in place
	(C)	fabricate core
	(D)	all of the above
19.	Threa	ad rolling is somewhat like :
	(A)	cold extrusion (B) cold machining
	(C)	cold rolling (D) cold forging
20.	Cutti	ng and forming operations can be done in a single operation on :
	(A)	Simple die (B) Compound die
	(C)	Combination die (D) None of these
21.	The	metal in machining operation is removed by :
	(A)	Tearing chips
	(B)	Distortion of metal
	(C)	Shearing the metal across a zone
	(D)	Cutting the metal across a zone
AE	(M) -B	7 P.T.O

22.	Ultrasonic machining method is best suited for :									
	(Λ)	Brittle materials		(B) Plasti	ics		•			
	(C)	Lead		(D) Non-	errous alloy	5				
23.	Feed	rate in milling operat	lon is equ	al to:	. V.e					
	(A)	RPM								
	(B)	RPM \times No. of teeth				6				
	(C)	RPM × Feed per too	th × No.	of teeth						
	(D)	None of the above								
24.	Mach	inability depends on :				1	1.4			
-	(A)	microstructure, physic workpiece material	cal and me	echanical pr	operties and	compositio	m of			
		Wordhard Tallocation								
	(B)	cutting forces								
	(C)	type of chip		7 1		50				
	(D)	tool life								
25.	Time	taken to drill a hole	through a	25 mm thi	ck plate at :	300 r.p.m.	at a			
·	feed	rate of 0.25 mm/revol	ution will	be:		10				
	(A)	10 sec		(B) 20 s	ec					
		- 125								
	(C)	40 sec		(D) 50 s	ec					
AE	(M)—B		8			0.0				

2.0						-		
26.	The o	coordinate of a	any point on	Mohr's c	ircle repres	sent:		W
			10	-				
	(A)	State of stress	s at a point w	ith referen	ce to any ar	bitrary set	of orthog	onal
	100							
		axes passing	through the	at point				
				•	+			
	(B)	Principal str	esses at a p	oint				
	(2)		1	7		X		
	9.5			,	1			
	(C)	One of the t	wo direct st	resses and	shearing	stress at a	point	
					# .			
	(D)	Two direct s	tresses at a	point '			. '	
						8 10		35
S.III			31 7 7		L.L.			
27.	Shrin	nking a thick	cylinder ove	r anotner	nerps :	7	(E)	
	(A)	reduce the n	nagnitude of	tensile be	oop stress			
58	*9	18				48 A	40	
	(10)	reduce the di	fformen helv	oon the hi	oher and lo	wer magni	lude of ter	osile
	(B)	reduce the un	Helence perw	een are m	gittir tilla 10			
			90	15		6	6	
	1	hoop stress		5 a.				
			80					
19	(C)	remove the	longitudinal	stress		30		
	m	reduce the c	out					
·	(D)	reduce the c	080					
28.	In fi	xed beam of l	ength(l) with	th a conce	ntrated cer	itral load	two poin	ts or
			120			iji) Maranananan arawa		
7	conti	aflexure will	occur, each	from supp	orts at a d	listance of	:	2)
101			12					33
	(A)	1/3		; (B)	$1/\sqrt{3}$			
	(24)	270	105	, ,				
	1940W03	1112000		(00)	177			. 0.
	(C)	1/6	4	(D)	1/4			
		+				100		
A 14	OMO TO		1 150	9			p	T.O.
AL	(M)—B	(40) 42		97				

29. Load p_c and p_0 respectively acting axially upon close coiled and open coiled helical springs of same wire dia, coil dia, no. of coils and material to cause same deflection :

- (A) p_c/p_0 is 1, < 1 or > 1 depending upon α
- $(B) \quad p_e/p_0 = 1$
- (C) $p_0/p_0 > 1$
- (D) $p_e/p_0 < 1$
- 30. A bad observation which must be ignored can be identified by :
 - (A) observing the data
 - (B) using observation to calculate and see if result deviates too much
 - (C) finding arithmetic mean and seeing which observation deviates most
 - (D) plotting the result and seeing which observation deviates most from the line

31.	Select th	e <i>wrong</i> stateme	nt. Fatigue	crack	initiates on	surface bec	ause :
	(A) in	most cases stres	s is highest	on su	ırface		
	(B) su	rface is machine	i ,				
	(C) su	rface is inherent	ly weaker th	nan th	ne inside		
	(D) th	ere may exist so	me stress co	ncent	ration on su	rface	
32.	Goodman	n straight line re	lation sugge	sts th	at variable	stress comp	onent in
	the pres	ence of a positive	mean stres	ss :			
	(A) de	creases					
	(B) in	creases					
	(C) re	mains unaffected					
	(D) in	creases or decrea	ses dependi	ng up	on σ_u		
33.	A machi	ne part made of	steel of ultin	mate 1	tensile stren	gth of 500 M	MPa and
	carrying	a compressive me	an stress of 5	0 MPa	can be made	to carry a n	naximum
	tensile s	stress of :					
	(A) 17	75 MPa		(B)	225 MPa		
	(C) 2'	75 MPa		(D)	325 MPa		
AE	(M)—B		,11				P.T.O.

34.	A fati	gue crack in a sou	and and smoot	th spe	cimens	takes:		
	(A)	longer time in ini	itiation than p	oropag	ation			
						4		
	(B)	longer time in pr	opagation that	n initi	ation			
	(C)	equal time in init	tiation and pr	opaga	tion			
	(D)	no time in propag	gation		*	30		
35.	Ellips	se of stress can be	drawn only v	when	a body	is acted	upon by	:
	20							
	(A)	one normal stress	3					
	(B)	two normal stress	ses					
					F			
	(C)	one shear stress	*					
	1022000 N			1				
	(D)	two normal stres	ses and one s	near s	tress			
0.0	Ct.	n energy stored in	a hade due to	0 611	ddenly	applied l	oad comp	ared to
36.	Strai	n energy stored in	a body due it) a su	ddemy	applied	oud comp	
	wher	applied slowly is	:					
		10						
	(A)	twice		(B)	four t	imes		
	(C)	eight times		(D)	half			
			11 20,000			88		
AE	(M)—E	3	12					

37.	Vari	ation of bend	ing momen	t in a cantile	ever carrying a l	oad, the intensity
	of w	hich varies u	niformly fr	om zero at t	he free end to u	per unit run at
	the	fixed end, is	by:			
	(A)	cubic law		(B)	parabolic law	
	(C)	linear law		(D)	none of these	
38.	Fani	volent memor	t of incution	£41		
						imber of a flitched
Š.	bean	n made up of	steel and	timber is (m	$= E_g/E_t$):	
	(A)	$(I_t + m/I_s)$		(B)	$(\mathbf{I}_t + \mathbf{I}_s/m)$	
	(C)	$(I_t + mI_s)$		(D)	$(\mathbf{I}_t + 2m\mathbf{I}_t)$	
39:	Shea	r centre of a	semicircula	r arc is at :		
	(A)	$4r/\pi$		(B)	3r/π	
	(C)	2r/π		(D)	r/π	
40		1.				
40.	The t	nree-moment	theorem fo	or continuous	beams was forv	varded by :
	*(A)	Bernoulli		(B)	Clapeyron	
	(C)	Castigliano		(D)	Maxwell	
AE (М)—В			13		P.T.O.

9.0							
41.	If a small cu	it is made	at a horizonta	l diamet	er of a ring un	der compre	ession,
9	the maximu	m stress:	1				
	(A) decre	ases	3.	(B)	increases		9
	(C) does	not change	•,	(D)	becomes zero		
42.	Secant form	nula is apj	olicable for :				
	(A) shor	t columns	under axial le	oading			
	(B) long	columns t	ınder axial lo	ading			
	(C) shor	t columns	under eccent	ric loadi	ng		
	(D) long	g columns	under eccentr	ic loadir	ng		
43.	The use	of compoun	d tubes subje	cted to	internal pressu	ire are ma	de to :
	(A) eve	n out the	stresses				
	(B) inc	rease the t	thickness		a 9		-
	(C) inc	rease the	diameter of tl	he tube			
	(D) in	crease the	strength				2.5
AE	(M)—B			14			

The initial hoop stress in a thick cylinder when it is wound with a wire under 44. tension will be: (A) zero (B) tensile (C) compressive (D) bending The collapse speed of a rotating solid disc is given by : 45. (A) $\omega = \frac{1}{R} \sqrt{\frac{3\sigma_y}{\rho}}$. (B) $\omega = \frac{1}{R} \sqrt{\frac{\sigma_y}{3\rho}}$ (C) $\omega = \frac{1}{R} \sqrt{\frac{2\sigma_y}{\rho}}$ (D) $\omega = \frac{1}{R} \sqrt{\frac{\sigma_y}{2\rho}}$ Where σ_y is yield stress, ρ is the density and R is the radius of the disc. In circular plates with edges clamped and with a uniformly distributed load, 46. the maximum radial stress occurs at : clamp edge (A) (B) the centre (C) the mean radius none of these In which of the following mechanism, the Coriolis acceleration exists? 47. (A). whitworth quick return mechanism (B) tangent cam mechanism both (A) and (B) (C)

(D)

one of the above

	25						
48	In ca	se of pivot bear	ing, the wear	is:			
	(A)	maximum at (he centre		K .		
4	(B)	zero at the cen	otre				
	(C)	uniform throu	ghout the cont	art arc		20	
	(D)	minimum at r	maximum radi	ns			
49.	The	erowning of pul	ley is done to	: .			
	(A)	improve_powe	r		*		
	$\langle B \rangle$	improve pulle	y strength		*	*	
- 1	(C)	increase veloc	eity ratio		(7) E1		
	(f))		oelt running o				38
50.	Wh	ich of the follow	ging governor	cannot be	isochronou	s ?	
	(A)	Watt		(B)	Hartnell		
	(C)			(D)	Porter		#
31.	Wì	aich of the folk	wing goars a	re used to	n connect to	wo non-pa	rallel no
	. int	ersecting shafts	?				
	(A	Spa r		(B)	Helical		
	, (C	Bevel		(O)	Worm ges	ır	
.Al	5 (M)-	В		16			

52.	Fro	m the point of	view of strer	ngth which	h gear profil	c is better	? ·
	(A)	Involute		(10)			
		mywate		(B)	Cycloidal		
	(22)	74		7		-	
	(C)	Conjugate	•	(D)	None of th	iese	
		- R	1.				£.
53.	A ri	gid body is said	to be in ea	pilibrium	if:		
					-1		
	(A)	$\Sigma \mathbf{F}_{\mathbf{x}} = 0$		(B)	SF 0		
, e :				(13)	$\Sigma \mathbf{F}_y = 0$		
	(CD)	7M ()			- 1		
	(C)	$\Sigma M_z = 0$		(D)	All of these	e	
			7.1		200,000		
54.	Lane	hester techniqu	e of balancir	ng can be	used for ba	lancing of	
		NA.					
10.	(A)	Primary forces	1	(B)	Secondary	forces	
	(0)	The state					
	(C)	Pitching mome	ents	(D)	All of these	•	
55.	Mass	m attached to a	a shaft rotat	ing at ω r	ad/s at radio	s r from tr	ne axis of
	shaft	is balanced by i	mass m_b at r	adius r_b f	rom the axis	. If the spe	ed of the
	shaft	is doubled for l	balance, the	value of	mass m_b is :		
	743	D. D. J				12 50	
	(A)	Doubled		(B)	Quadruple		1
	(C)	Halved		(D)	Unaffected		
AE (N	(f) —B		1	1.7			P.T.O.

56.	In da	mped free vibrating system :
	(A)	the spring force vector acts in the direction opposite to the
		displacement
	(B)	the damping force vector acts in the direction opposite to the velocity
	(C)	the inertia force vector acts in the direction opposite to the acceleration
	(D)	all of the above statements are true
57.	The	transmissibility is same for all values of damping factors at frequency
	rati	o of:
	(A)	1 (B) 2
	(C)	$\sqrt{2}$ (D) $1/\sqrt{2}$
58.	In	a force vibration at the resonance, the phase angle is:
	(A)	/B) 45°
	(C.	
Al	⊈ (M)~	_B 18

59.	The s	axis of spin, the axis of precession	and axis of	applied gyrosco	pic torque
				21 01	•
	are c	ontained in :		122.	540
			a * ,		
	(A)	one plane			
		the passes		40	1 2
	(B)	two planes perpendicular to eac	h other		
	50000				
	(C)	three planes perpendicular to or	ne another		
2	(0)	tiree planes perpendicular to or	io anomei		
	(D)	none of the above		10	
	(19)	none of the above			
75/5	N171	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,		
60.	when	a naval ship is pitching with the	bow rising	, rotor rotating	clockwise
	when	seen from stern the gyroscopic e	effect acting	on it will be :	
	(A)	to move it towards the port			
		¥ 4			
	(B)	to raise the bow and lower the	stern		
			.,,,,,		
	(C)	to move it towards the start box	ard	40	
	100	DO MINTO IL CONTAININ LING SERVICIONI			
	(D)	to raise the stern and lower the	Lucia		
	(D) _	to raise the stern and lower the	: DOW		
61.	Which	n of the following names does no	t belong to	Lawn Tennis	?
	(A)	Anand Amritraj (1	B) Novak	Djokovic	
	(C)	Nenad Zimonjic (J	O) Mutaz	Essa Barshim	
	2				
AE (M)—B	19	11		P,T.O.

62.	Who	of the following is associa-	ted with M	Juslim Brotherhood	in Egypt ?
	(A)	Mohammad Morsi	(B)	Abdel Fatiah al-Si	si
	(C)	Hosni Mubarak	(D)	Basil Jarret (from	Zamaica)
63.	ISIS	stands for :		*	S (3)
	(A)	Islamic System of Iraq a	nd Syria		
	(B)	Islamic State of Iraq and	ł Syria		
	(C)	Islamic State of Iraq and	i Sudan		
	(D)	Islamic State of Iran and	l Sudan		
64.	The	main focus of Energy Effi	ciency and	Renewable Energy	Management
	Cent	tre is on :		8	
	(A)	Thermal Power	(B)	Nuclear Power	
	(C)	Solar Power	(D)	Both nuclear and	solar power
65.	How	many glacial lakes are th	nere in HP	?	
88	(A)	200	(B)	230	
	(C)	239	(D)	249	
AE ((M)l	В	20		

66.	Which	of the fo	llowing stat	ements abou	t Lalpani in	Himachal I	radesh is
	correct	1?					
	(A)	It is a res	serve Forest	near Shimla			
8.	(B)	It is a gla	icial Lake o	f HP			
	(C)	It is a riv	er in HP				
	(D)	It is a gla	cier				
67.	The H	limachal F	radésh gov	ernment imp	osed a blan	ket ban on	the non-
	biodeg	radable dis	sposadable j	olastić cups, j	plates and gl	asses in wh	ich of the
	followi	ng years ?					
	(A)	2010		(B)	2011		
	(C) -	2012		(D)	2013		
68.	The ov	erall glaci	er area has	reduced from	m 1962-2001	to:	
	(A)	2077 sq. k	m				
	(B) 5	2000 sq. k	m				
	(C) 1	1628 sq. ki	m				1.00
	(D) 1	1600 sq. kı	m				
4.00	MD D				6	Table 1	
AE (M)—B			21			P.T.O.

			Zullu was :	
69:	In 2005, the non-biodegradab	le waste in i	Xunu was .	
	(A) 16.9% of the total was	te (B)	26.2% of the total	waste
	(C) 32.4% of the total was	te (D)	34.8% of the total	waste
70.	Which of the following report	of the Nation	nal Law Commission	contains the
	guidelines for making the	criminal jus	tice system more e	ffective and
	responsive ?			
	(A) 239 .	(B)	249	
	(C) 259	(D)	269	
71.	Mary Kom, a renowned Bo	xer, belongs	to which of the follow	wing States ?
	(A) Assam	(B)	Nagaland	
	(C) Manipur	(D)	in the second second	
72.	Which of the following state	ments about t	he Prime Minister's J	an Dhan Yojna
	is not true ?		7	
	(A) It is a financial incl	usion based	scheme for the poor	
	(B) It provides for accid	lent insuranc	e cover of rupees 1	lakh
			e cover of Rs. 30,000	
	(D) It provides for a free	debit card for	those who open bank	accounts before
	31st December, 201	.4		
Al	E (M)—B	22		

						25%		
73,	Indi	ia and Australia signed	in S	eptem	ber 2014	which	of the	following
	9000	ements?					+	
	agre	ements (9		5.0			
	(A)	Thermal power supply				22		
	1000	racinal power supply						
	(B)	Civil Nuclear deal		200				
						100		
	3 34							208
	(C)	Nuclear Non-proliferation	on Ag	reeme	nt.			
*		•						
								1 M
	(\mathbf{D})	Indo-Australia Defence	Agree	ement				
			471000					
74.		rding to the Supreme Cour		15				
		naximum term for the cri						
- 3	pe se	leased under which of the	e follo	wing ,	section of	the Cri	minal P	rocedure
								7501000 0-333994 0 0
	Code	?						
					27			
								9 90
	(A)	Section 432 A		(B)	Section	433 A		
				3777	Decaron	100 11		
94								
	(C)	Section 436 A	+	(D)	Section	439 A		
				A 5				
					1.0			
75.	Kala	Azar is most prevalent i	n whi	ch of	the follow	ving sta	tes ?	
		36						
			20				F1	
	(A)	Himachal Pradesh		(B) -	West B	engal		
	((1)	TI 11	20			3.8		
	(C)	Jharkhand		(D)	Bihar			
AE G	M) B		23					13 m o
	-4		40		7 2			P.T.O.

76.	Boko	Haram is:				
	$\langle A \rangle$	An Islamic Extremist Group				
	{B;	A political Party in Nigeria				
	(C) ·	An extremist Organization in	Afghar	nistan		
	(D)	An Islamic Political Party in	fran	*		
77.	The	international Security Assistant	e force i	in Afghanistan would come to	an)	
	end	on :				
	(A)	November 21, 2014	(B)	November 30, 2014		
	(C)	December 25, 2014	(1))	December 31, 2014		
78.	Acce	ording to Ivo Daalder, (Ikraini	an crisis	s can be solved by which of	the	
		wing steps ?				
	(i)	Ending support to the separ	ratists b	oy Russia		
	$\langle ii \rangle$	Withdrawal of Russian troo	ps and	equipment		
	(iii) Recognition by Russia of the Ukrainian sovereignty and integrity					
	(iv) A more robust intervention by Russia in Ukrain					
	Sel	ect the <i>correct</i> answer from th	e codes	given below:		
	Coc	des :				
	(A)	(i), (ii), (iii) and (iv) only	(B)	(i), (ii) and (iii) only		
	(C)	(ii) and (iii) only	(D)	(i), (iii) and (iv) only		
VE.	(M)		24			
4414	44.4	57.58				

79.	Scotla	and bacame a part of	f the	Unit	ed Kir	ngdom effectively on	
	(A)	May 1, 1706	9		(B)	May 1, 1707	
			*				06 3 38
	(C)	May 1, 1708			(D)	August 1, 1708	
				- 65			
80.	All wo	omen police stations a	re ope	ratio	nal in	which of the following	g cities/towns
			*		T.		
	of Hi	machal Pradesh ?					
			ж. В с				
	(i)	Chamba		7) 88	(ii)	Shimla	
	2248				75.00		
	(iii)	Dharmashala			(iv)	Mandi	
	Select	the correct answer	from	the c	odes į	given below:	
100							
	Codes	1.3:				10.00	
	(A)	(i), (ii), (iii) and (iv)			(B)	(i), (ii) and (iii)	
1	(0)	(12 (12) and (14)			(TD)	(III) ind (In)	
	(C)	(ii), (iii) and (iv)			(D)	(iii) and (iv)	
AE (I	M)—B			25			P.T.O.

31,	For a	given set of operating pressure	limits	of a Rankine cycle, th	e highest
	efficier	ncy occurs for :			. 80
	(A)	Saturated cycle	(B)	Superheated cycle	
	(C)	Reheat cycle	(D)	Regenerative cycle	
32.	The n	nain advantages of a reheat R	ankine	cycle is:	
	(A)	reduced moisture content in l	ow pre	essure side of turbine	
	(B)	increase efficiency		Sear Sear	
	(C)	reduced load on condenser		30	
	(D)	reduced load on pump		40	
83.	Whiel	n one of the following is corr	rect ?	In ideal regenerative	cycle, the
	tempe	erature of steam entering the	turbin	e is same as that of :	
	(A)	Water entering the turbine			
	(B)	Water leaving the turbine			
	(C)	Steam leaving the turbine			
	(D)	Water at any section of the	turbin	e	
ΔE	(M)B	26	3		

- 84. In convergent-divergent nozzle, normal shock can generally occur :
 - (A) along the divergent portion and throat
 - (B) along the convergent portion
 - (C) anywhere along the length
 - (D) near the inlet
- 85. In flow through steam nozzle, the actual discharge will be greater than the theoretical value when :
 - (A) Steam at inlet is superheated
 - (B) Steam at inlet is saturated
 - (C) Steam gets supersaturated
 - (D) Steam at inlet is wet
- 86. In flow through convergent nozzle, the ratio of back pressure to the inlet pressure is given by the ratio :

$$\frac{p_b}{p_1} = \left(\frac{2}{\gamma + 1}\right)^{\frac{2\gamma}{(\gamma - 1)}}.$$

If the back pressure is lower then p_b given by the above equation, then :

- (A) the flow in the nozzle is supersonic
- (B) a shock wave exists inside the nozzle
- (C) the gases expand outside the nozzle and a shock wave appears outside the nozzle
- (D) a shock wave appears at the nozzle exit

87.	For a	adiabatic expansion with t	he friction	through the nozzle, the following
	remai	ns constant :	1.20	
	(A)	Entropy	(B)	Static enthalpy
	(C)	Stagnation enthalpy	(D)	Stagnation pressure
88.	The	effect of friction on flow of	steam the	rough nozzle is to :
	(A)	decrease the mass flow r	ate and to	increase the wetness at the exit
	(B)	increase the mass flow r	ate and t	o increase the exit temperature
	(C)	decrease the mass flow r	ate and to	decrease the wetness at the exit
	(D)	increase the exit tempera	ture withou	ut any effect on the mass flow rate
89.	If th	e velocity of propagation of	small dist	urbance in air at 27°C is 330 m/s,
	then	at a temperature of 54°C	, its speed	would be :
	(A)	660 m/s	(B)	$330 \sqrt{2} \text{ m/s}$
	(C)	$330/\sqrt{2} \text{ m/s}$	(D)	$330\sqrt{327/300} \text{ m/s}$
90.	For	one-dimensional isentropic	flow in a di	iverging passage, if the initial static
	pres	ssure is p_1 , and the initial 1	Mach numl	ber is M_1 , then for the downstream
	flow	v :		
	(A)	${\rm M_2} < {\rm M_1}, p_1 < p_2$	(B)	$M_2 < M_1, p_1 > p_2$
	(C)	$M_2 > M_1, p_1 > p_2$	(D)	$M_2 > M_1, p_1 < p_2$
AE	(M)-	-В	28	

	The	stagnation	tempera	ture is of a	an isent	ropic flow	of air (y =	1.4) is 400	K.	
	If the temperature is 200 K at a section, then the Mach number of the flow will be:									
	(A)	1.046		*	(B)	1.264				
	(C)	2.236			(D)	3.211				
92.	Isentropic flow is:									
	(A)	irreversi	ble adiaba	atic flow			83			
10	(B)	reversible	e adiabat -	ic flow		÷	1.			
	(C)	ideal flui	id flow		9					
	(D)	frictionle	ss reversi	ible flow						
3.	An a	eroplane is	s cruising	at a spee	ed of 800) kmph at	an altitu	de, where the	ne	
	air te		e is 0°C.	The flight	Mach	1				
		emperatur			6 Maci	number a	t this spe	ed is nearly	•	
	(A)	1.5			(B)	0.254	t this spe	ed is nearly		
							t this spe	ed is nearly	•	
4.	(A) (C)	1.5 0.67			(B) (D)	0.254 2.04		ed is nearly		
4.	(A) (C) In a v	1.5 0.67			(B) (D)	0.254 2.04		10		
4.	(A) (C) In a v	1.5 0.67 apor comp	ression re	efrigeratio	(B) (D)	0.254 2.04		10		
4.	(A) (C) In a visuase	1.5 0.67 vapor comp ed to : keep the	oression re	efrigeratio	(B) (D) n system	0.254 2.04 n, liquid to	suction h	eat exchang		
1.	(A) (C) In a v is use (A)	1.5 0.67 apor comp ed to ; keep the prevent t	oression re COP con the liquid	efrigeratio stant	(B) (D) n system	0.254 2.04 a, liquid to	suction h	eat exchang		
4.	(A) (C) In a v is use (A) (B)	1.5 0.67 vapor comped to : keep the prevent t	oression re COP con the liquid	efrigeratio stant refrigera	(B) (D) n system of from of leaving	0.254 2.04 a, liquid to	suction h	eat exchang		

		· · · · · · · · · · · · · · · · · · ·						
95.	Excessive pressure drop in the liquid line in a refrigerating system							
	cause	s:						
	(A)	high condenser pressure						
	(B)	flashing of the liquid refrigerant						
	(C)	higher evaporator pressure						
	(D)	under cooling of the liquid refrigerant						
96.	The	enthalpies at the beginning of compression at the end of compression						
	and a	at the end of condension are 185 kJ/kg, 210 kJ/kg and 85 kJ/kg, respectively.						
	The	COP of the vapor compression refrigeration system is :						
	(A)	0.25 (B) 5.0						
	(C)	4.5 (D) 1.35						
97.	The	effect of super-heating of vapor in the evaporator and sub-cooling of						
	cond	ensate in the condenser, for the same compressor work is :						
	(A)	increase the COP						
	(B)	decrease the COP						
	(C)	super-heating increases COP, but sub-cooling decreases COP						
	(D)	super-heating decreases COP, but sub-cooling increases COP						
AE	(M)—E	30						

98.	For :	the same condenser and evaporator temperatures, the COP of absorption
	refri	geration system is less than that of mechanical vapor compression
	refri	geration system since in the absoption refrigeration system :
	(A)	a liquid pump is used for compression
	(B)	a refrigerant as well as a solvent is used
	(C)	absorber requires heat rejection
	(D)	low grade energy is used to run the system
9.	In th	e absorption refrigeration cycle, the compressor of the vapor compression
	refrig	geration cycle is replaced by :
	(A)	liquid pump
	(B)	generator
	(C)	absorber and generator
	(D)	absorber, liquid pump and generator
00.	In a	vapor absorption refrigerator, heat is rejected in :
	(A)	Condenser only (B) Generator only
	(C)	Absorber only (D) Condenser and absorber
Œ (l	M)—B	31