DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

TEST BOOKLET

AP(MECHANICAL ENGINEERING)(TE)-2014

	All questions carry equal marks.			
	INSTRUCTIONS			
1.	Immediately after the commencement of the examination, you should check that test booklet does not have any unprinted or torn or missing pages or items, etc. If so, get it replaced by a complete test booklet.			
2.	Write your Roll Number only in the box provided alongside. Do not write anything else on the Test Booklet.			
3.	This Test Booklet contains 100 items (questions). Each item comprises four responses (answers). Choose only one response for each item which you consider the best.			
4.	After the candidate has read each item in the Test Booklet and decided which of the give responses is correct or the best, he has to mark the circle containing the letter of the selected response by blackening it completely with Black or Blue ball pen. In the following example, response "C" is so marked:			
	(A) (B) (D)			
5.	Do the encoding carefully as given in the illustrations. While encoding your particulars or marking the answers on answer sheet, you should blacken the circle corresponding to the choice in full and no part of the circle should be left unfilled.			
6.	You have to mark all your responses ONLY on the ANSWER SHEET separately given according to INSTRUCTIONS FOR CANDIDATES' already supplied to you. Responses marked on the Test Booklet or in any paper other than the answer sheet shall not be examined.			
7.	All items carry equal marks. Attempt all items. Your total marks will depend only on the number of correct responses marked by you in the Answer Sheet. There will be no			
۰	negative marking. Before you proceed to mark responses in the Answer Sheet fill in the particulars in the			
8.	front portion of the Answer Sheet as per the instructions sent to you.			
	After you have completed the test, hand over the Answer Sheet to the Invigilator.			

AP(MECHANICAL ENGINEERING) (TE)-2014

Time	Allov	wed: 2 Hours]		[Maximum Marks : 100		
1.	The	yield locus for von Mises yield co	riter	rion on π-plane is :		
	(A)	Circle (B)	Ellipse		
	(C)	Hexagone ((D)	Circular cylinder		
2.	The	The Levy-von Mises equation is relation between the ratios of :				
	(A)	the components of strain and str	ress	increments		
	(B)	the components of strain increm	nent	and deviatoric stress and shear		
		stresses				
	(C)	plastic strain increments and deviatoric stress and shear stresses				
	(D)	the stress increments and plastic	e sta	rain increments		
3.	The	slip line theory is developed to a	ina!	yse :		
	(A)	non-homogeneous plane stress deformation				
	(B)	homogeneous plane stress deform	nati	on		
	(C)	non-homogeneous plane strain de	efor	mation		
	(D)	homogeneous plane strain deform	nati	on		
AP(M	E)	2				

(A)	Polish the surface t	remove stress	amplificati	on sites	
(D)	Ingresses the man bar	-6:116		31	
(13)	Increase the number	oi internal dere	cts (pores, e	c.) by means	of altering
	processing and fabri	cation techniqu	ies		4
(00)	B# 1:0 (1)	1- 1			
(C)	Modify the design to	o eliminate not	ches and su	idden contou	r changes
(D)	Harden the outer su	rface of the str	ucture by ca	se hardening	(carburiz
	ing, nitriding) or sh	ot peening	2		
Cree	ep becomes important	at 0.4 Tm, Tm l	eing the abs	solute meltin	z tempera-
ture	of the metal, For A	l, 0.4 Tm:			
(A)	373 K	(B)	473 K		
// (53)74		(3)	TIO IL		
(C)	573 K	(D)	673 K	14 14	*
The	maximum number of	phases that m	ay be preser	it for a terns	ry system
assu	ming that pressure is	s held constant	:		(5)
2000	4.3				2
(A)	4	(B)	3		
(C)	2	(D)	0		
4 4 4 4 4 4		877.7			

7.	Which one is not the advantage	of cold working ?	*
	(A) A high quality surface finis	n .	
	(B) The mechanical properties n	nay be varied	
	(C) Close dimensional tolerances	i I	
	(D) A loss of ductility		
8.	Percent elongation is an indicato	r of which mechanical propert	У?
	(A) UTS	(B) Yield strength	
	(C) Ductility	(D) Resilience	
9.	Simple viscoplastic constitutive o	quations are used to model:	
	(A) stress relaxation	(B) creep	
	(C) low cycle fatigue	(D) ductile fracture	
10.	Which of the following is a measure	sure of the pressure exerted b	y a state o
	stress ?		
	(A) Deviatoric stress	(B) Hydrostatic stress	
	(C) von Mises stress	(D) Cauchy stress	. e/-
AP(A	ME)	4	

1. 🖺	State of plane stress in x-y plane	is accom	panied by strains along:
	(A) x, y and z-axes	(B) a	and y-axes
	(C) x and z-axes	(D) j	and z-axes
12.	The number of strain readings (using	ng strain (gauges) needed on a plane surfac
	to determine the principal strains	and the	ir directions is :
	(A) 4	(B)	3
	(C) 2	(D)	1
13.	The Grubler's criterion for deter	mining t	he degrees of freedom (n) of
	mechanism having plane motion	is:	
	(A) $n = (l - 1) - j$	(B)	n=3(l-1)-2j
	(C) $n = 2(l-1) - 2j$	(D)	n = 4(l-1) - 3j
	where $l = No.$ of links and $j = No.$	lo. of bin	ary joints.
14.	The Coriolis component of acceler	ration is	taken into account for :
	(A) slider crank mechanism	(B)	quick return mechanism
	(C) four bar chain mechanism	(D)	none of the above
AP(M	IE)	5	P.T.C

15.	The	frictional torque transmitted in a flat pivot bearing, considering uniform
	wear	r, is :
10	(A)	1/2* μ.W.R. cosec α
	(B)	2/3* μ.W.R. cosec α
100	(C)	3/4* μ.W.R. cosec α
	(D)	μ.W.R. cosec α
16.	Abse	orption of energy into a flywheel is :
	(A)	at constant speed
1	(B)	accompanied by increase of speed
	(C)	accompanied by decrease of speed
4	(D)	not concerned with increase/decrease of speed
17.	For	static balancing:
	(A)	dynamic forces acting on the shaft must be zero
53	(B)	net couple acting on the shaft due to dynamic forces must be zero
	(C)	both (A) and (B)
	(D)	none of the above
AP(N	Æ)	6

18-	The secondary unbalanced force due to a reciprocating mass has :
	(A) same frequency as of primary force
	(B) twice the frequency as of primary force
	(C) four times the frequency as of primary force
	(D) none of the above
19.	In an I.C. engine piston executes approximately S.H.M. if :
	(A) length of connecting rod is very large in comparison of the length of
	crank
	(B) length of crank is very large in comparison of the length of connecting
	rod
	(C) length of connecting rod is equal to the length of crank
	(D) piston does not execute S.H.M. at all
20.	The supply of working fluid to the engine to suit the load conditions is controlled
	by:
	(A) flywheel (B) governor
	(C) throttle valve (D) all of these
AP(N	TE) 7 P.T.O.

21.	Sensitiveness of a governor is defined as:
	(A) range of speed/mean speed
12	
	(B) range of speed/2 × mean speed
	(C) mean speed/range of speed
	(D) 2 x mean speed/range of speed
22.	If there are several unbalanced masses in a rotor in different planes, the
	minimum number of balancing masses required is/are:
100	
-11 12	(A) one (B) two
V 46	
3	(C) three (D) four
7	
23.	SEQA effective Von Mises stress at phase difference of 90° is minimum when
	the ratio of torsion stress amplitude and bending stress amplitude is near
	to:
	(A) 0.2 (B) 0.6
	(C) 1 (D) 1.6
APO	ME) 8

- 24. Which statement is true from the following statements for full journal bearing?
 - (A) The temperature rise due to fluid shear increases on increase of Sommerfield number and it is more for longer bearing
 - (B) The temperature rise due to fluid shear increases on increase of Sommerfield number and it is less for longer bearing
 - The temperature rise due to fluid shear decreases on increase of Sommerfield number and it is more for longer bearing
 - The temperature rise due to fluid shear decreases on increase of Sommerfield number and it is less for longer bearing
- RMS value of surface finish, Rq is obtained from the following 25. equation:

9

(A)
$$R_q = \frac{1}{L} \int_0^L |y| dx$$

(D)
$$R_q = \left[\frac{1}{L}\int_0^L y^2 dx\right]^{1/2}$$

(B) $R_q = \left[\frac{1}{L} \int_{0}^{L} |y| dx\right]^{1/2}$

(C)
$$R_q = \frac{1}{L} \int_0^L y^2 dx$$

26.	In aı	n involute pinio	on and gear sy	ystem, t	he interference ca	n be avcided
				- 1		
	by:					
			1 37		D.	
	(A)	decreasing nun	nber of teeth in	n pinion	- Secondary	
112		39				
	(B)	lowering the p	ressure angle-			
4	(C)	taking long an	d short adden	lum sys	tem	
	(D)	making the ge	ars using form	milling	cutter	
				≨reconstant red	Accessor of the contract of the contract of	-£ 1000 = n m
27.	A so	olid steel shaft o	of diameter D s	hows a	first critical speed	of 1200 r.p.m.
52	If th	ne shaft were b	ored to make i	t hollow	with an inside dia	meter $\frac{3}{4}$ D, its
				5		
	criti	cal speed would	d be:			
					4	
	245	1050	23	(B)	1200 r.p.m.	
	(A)	1050 r.p.m.		(13)	1400 1.p.m.	
				ai second	. E	
	(C)	1350 r.p.m.		(D)	1500 r.p.m.	
		The second of the second	de uses	= 1		
28.	If T	is the life leng	th of the syste	em, then	reliability of a sy	stem at time t
		D(t) is defined	90 *			
	say	R(t) is defined	as.			
					SECTION SERVICE	101
	(A)	R(t) = P(T >	t) -	(B)	$\mathbf{R}(t) = \mathbf{P}(\mathbf{T} < t)$	
						- 2
	100	D/A D/T	*/	(D)	R(t) = 1 - P(T >	t)
	(C)	R(t) = P(T =	L)	(D)	TA/D/	

29. 🗻	Select the most suitable statement which is true:				
	(A)	Newton's method allov	vs slower conv	ergence to the minimun	point
		compared to steepest d	escent method	12	
	(B)	Steepest descent direc	tion at any po	nint always passes throu	gh the
	(C)	In Genetic algorithm r	nutation probab	oility is more than the co	ossover
	(D)	GRG method is a vari	able eliminatio	n method	
30.		a tilted thrust bearing ximum pressure lies :	operating unde	or hydrodynamic lubricat	ion, the
		at the exit point			- w
	(B)	at the entry point			
	(C)	in between the entry	and exit point		
	(D)	at entry or exit point	depending on th	e direction of rotation of t	he shaft
31.	The	e fatigue strength data is	obtained from a	rotating beam test. In thi	s regard,
	loa	iding is:			
	(A)) random	(B)	repeated	
	(C)) fluctuating	(D)	fully reversed	
AP(ME)		11		P.T.O.

32.	Six sig	ma company accepts the following number of defective products in an
	one m	illion number of products :
	(A) 3	
	(C) 3	(D) 60
33.	For a	rotating disk to be of uniform strength, the disk should have :
	(A) 1	uniform thickness with a hole at the centre
	(B)	uniform thickness without a hole at the centre
	(C)	larger tangential stress on outer radius of disk
	(D)	larger radial stress on outer radius of disk
34.	The	hoop stress in case of thick cylinders across the thickness:
	(A)	is uniformly distributed
	(B)	varies from maximum at the outer circumference to minimum at inner
		circumference
	(C)	varies from maximum at the inner circumference to minimum at outer
		circumference
	(D)	none of the above
APO	ME)	12

- 35.4 If the shear force acting at every section of beam is of the same magnitude and of the same direction, then it represents:
 - (A) a simply supported beam with a concentrated load at the centre
 - (B) an overhung beam having equal overhung at both supports and carrying equal concentrated loads acting in the same direction at the free ends
 - (C) cantilever subjected to concentrated load at the free end
 - (D) simply supported beam having concentrated loads of equal magnitude and in the same direction acting at equal distance from supports
- 36. Which one of the following statements is true?
 - (A) A flexure formula is used for pure bending only.
 - (B) A flexure formula is used for bending with shear only.
 - (C) A flexure formula is used for bending as well as for bending with shear
 - (D) None of the above statements are true

	The no. of elastic constants in Tri	clinic material is :
37.	The no. of elastic constants in 111	i south Judgesta more of a re built
	11. 12. (1. (1. (1. (1. (1. (1. (1. (1. (1. (1	(B) 9
	(A) 36	e as it buttinguite a figure in (6)
	in four his naturality in 1988 2	
	(C) 2	(D) 21
38.	The loss of strength in compressi	on due to overloading is known as
1	(A) hysteresis	(B) relaxation
2	(C) creep	(D) Bouschinger effect
39.	Stress is a:	
	A STATE OF THE PARTY OF THE PAR	
-27	(A) Zero order tensor	(B) first order tensor
	(C) second order tensor	(D) third order tensor
40.		ions is not made in curved beam?
		not overeded
	(A) Limit of proportionality is	Hot exceded
	(P) Radial strain is not neglig	gible
	a proper total and testing a standard	COLUMN TO THE REAL PROPERTY OF THE PERSON OF
	(C) Plane to transverse section	ns remain plane after bending
- 41	(D) Material considered is iso	tropic and obeys Hooke's law
50	e e	
Δ.	P(ME)	14

41.	The	Poisson's ratio (µ) of bottle cork is:
-	(A)	0.5 (B) 0.3
	(C)	0.25 (D) 0
42.	Whi	ch one of the following is correct ?
	(A)	Pressure and temperature are independent during phase change
	(B)	An isothermal line is also a constant pressure line in the wet vapor region
	(C)	Entropy decreases during expansion
	(D)	The term dryness fraction is used to specify the fraction of mass of liquid
	II.	in a mixture of liquid and vapor
43.	With	increase in pressure, the latent heat of the steam :
	(A)	remains the same (B) increases
	(C)	decreases (D) behaves unpredictably
44.	When	wet steam flows through a throttle valve and remains wet at exit:
	(A)	its temperature and quality increases
	(B)	its temperature decreases but quality increases
3	(C)	its temperature increases but quality decreases
	(D)	its temperature and quality decreases
AP(MI	E)	15 P.T.O.

45.	Constant pressure lines in the superheated region of the Mollier diagram will
	have:
	(A) a positive slope
	(B) a negative slope
	(C) zero slope
	(D) both positive and negative slope
46.	Which one of the following statements is correct when saturation pressure
	of water vapor increases?
	(A) Saturation temperature decreases
	(B) Enthalpy of evaporation decreases
*	(C) Enthalpy of evaporation increases
- 3 - 1	(D) Specific volume change of phase increases
47.	For a pure substance, what are the numbers of the thermodynamic
	degree of freedom for saturated vapour and superheated vapour,
	respectively ?
	(A) 1 and 1 (B) 1 and 2
	(C) 2 and 1 (D) 2 and 2
AP(I	ME) 16

48 <u>4</u>	Which one of the following is correct? At critical point the enthalpy	y of
	vaporization is:	
	(A) dependent on temperature only	
43	(B) maximum	
	(C) minimum	
	(D) zero	
49.	Water (c_p = 4 kJ/kgK) is fed a boiler at 30°C, the enthalpy of vaporiza	tion
	at atmospheric pressure in the boiler is 2400 kJ/kg; the steam con	aing
- 51	from the boiler is 0.9% dry. What is the net heat supplied in	the
	boiler ?	
	(A) 2160 kJ/kg (B) 24 kJ/kg	
	(C) 2440 kJ/kg (D) 2280 kJ/kg	99
50.	In steam power cycle, reheat factor is usually in the range:	
	(A) 1.02 to 1.05 (B) 1.12 to 1.15	
	(C) 1.5 to 1.8 (D) 1.9 to 2.1	
AP(M	E) 17	T.O.

51.	In a steam power plant, feed water heater is a heat exchanger to prefeat
	feed water by:
	(A) live steam from steam generator
	(B) hot air from air preheater
	(C) but flow manner committee at \$10. 1. 11
	(C) hot flue gases coming out of the boiler
10	
	(D) extracting steam from turbine
-4	
52.	A condenser of a refrigeration system rejects heat at a rate of 120 kW, while
100	its compressor consumes a power of 30 kW. The coefficient of performance
	of the quotons would be
	of the system would be :-
	(A) 1/4 (B) 1/3
9	
	(C) 3 (D) 4
53.	In a Rankine cycle, with maximum steam temperature being fixed from
	metallurgical considerations, as the boiler pressure increases :
	metalitatgical considerations, as the boller pressure increases :
	(A) the condenser load will increase
	(B) the quality of turbine exhaust will decrease
	(C) the quality of turbine exhaust will increase
	(C) the quality of turbine exhaust will increase
	(D) the quality of turbine exhaust will remain unchanged
APOV	TE) 18
The same	

54. 🔻	The	output of a diesel engine can b	e increa	sed withou	it increas	ng the e	mgime
	revo	lution or size in the following	way:				
	(A)	feeding more fuel					
	(B)	heating incoming air					
	· (C)	scavenging	*				
	(0)	scavenging					
	(D)	supercharging					
55.	A 5	BHP engine running at full	load w	ould const	ime diese	l of the	order
*	of:						
	(A)	0.3 kg/hr	(B)	1 kg/hr			
	(C)	3 kg/hr	(D)	5 kg/hr	9		
56.	If p	petrol is used in a diesel engi	ne, then	1.1			
	(A)	higher knocking will occur		-			
	(B)	efficiency will be low					
	(C)	low power will be produced		4			
	(D)	lot of fuel will remain unb	urnt				
					4.		
AP(ME)		19				P.T.O.

57.	Heat	at transfer in liquid and gases takes place by :	*1
	(A)	conduction	F15 2
	(B)	convection	
17	(C)	radiation	180
	(D)	conduction and convection	
40			
58,	The	ermal diffusivity is :	
	(A)	a dimensionless parameter	
	(B)) function of temperature	- 12
	(C)	a physical property of the material	
	(D)) useful in case of heat transfer by radiation	
59.	A g	grey body is one whose absorptivity:	
	(A)) varies with temperature	
51	(B)) varies with wavelength of the incident ray	
	(Ċ)	is equal to its emissivity	
	(D))) does not vary with temperature and wavelength of the	incident
	4	ray	2
AP@	vŒ)	20_	

60.	*Two plane slabs of equal areas and conductivities in the ratio 1:2 are held
	together and temperature in between surface ends are t_1 and t_2 . If junction
	temperature in between two surfaces is desired to be $\frac{t_1+t_2}{2}$, then their
	thickness should be in the ratio of :

(A) 1:2

(B) 2:1

(C) 3:1

(D) 1:3

61. Inclination angle of a turning tool is measured on its:

(A) reference plane

(B) cutting plane

(C) orthogonal plane

(D) normal plane

62. The standard tolerance unit for sizes upto 500 mm is :

(A)
$$i = 0.45 \sqrt[3]{(D) + 0.001 D}$$

(B)
$$i = 0.45 \sqrt[3]{(D) + 0.01 D}$$

(C)
$$i = 0.45 \sqrt[3]{(D) + 0.1 D}$$

(D)
$$i = 0.45 \sqrt[3]{(D)}$$

where D = Geometric mean of the two diameter limits

63.	Whi	nich of the following welding process does not require any consum	able?
	(A)	Gas welding (B) Electroslag welding	
	(C)	Friction stir welding (D) Thermit welding	
64.	The	e rolling of metal foils is usually carried out on a :	8
8	(A)	two high rolling mill	
	(B)	three high rolling mill	
	(C)	four high rolling mill	
	(D)	cluster rolling mill	
65.	The	e longest cylindrical job can be produced by :	
	(A)	sand casting (B) continuous casting	
	(C)	investment casting (D) powder metallurgy	
66.	In I	EDM which factor is essential?	
	(A)	Workpiece should be conductor of heat	
	(B)	Workpiece should be magnetic	
	(C)	Workpiece should be conductor of electricity	*
	(D)	Workpiece should be non-magnetic	
AP(N	Œ)	. 22	

67.	The	following ga	s can be u	sed for ga	is we	elding:	****	F
	(A)	Hydrogen	a a		(B)	LPG		
	(C)	Acetylene			(D)	All of these		2
68.	Peri	manent moul	ld is used i	n the foll	owin	g casting processes	1 21	
	(A)	ceramic mo	ould casting		(B)	investment castin	g	(4)
	(C)	CO_2 castin	g		(D)	none of these		
69.	Wh	ich abrasive	is generall	y used fo	r suj	perabrasive grindin	ıg?	
	(A)	SiC			(B)	Al_2O_3		204
	(C)	CBN			(D)	None of these		
70.	Wh	ich tool refe	rence system	m is gene	rally	easy to use for re	-sharpeni	ng the
	eut	ting tool usi	ng grinding	?	17			
	(A)	ORS	14		(B)	NRS	17	
	(C)	ASA			(D)	WRS		
AP(ME)			23				P.T.0

71.	In ASA system, if the tool non	enclature is 8-6-5-5-10-15-2 mm, the	n the side
	rake angle will be :		
	(A) 5°	(B) 6°	
	(C) 8°	(D) 10°	
72.	It is required to cut threads	f 2 mm pitch on lathe. The lead scr	ew has a
	pitch of 6 mm. If the spindle s	peed is 60 r.p.m., then the speed of k	ead screw
	will be :		
	(A) 10 r.p.m.	(B) 20 r.p.m.	
	(C) 120 r.p.m.	(D) 180 r.p.m.	
73.	A moving mandrel is used in		
	(A) wire drawing	(B) tube drawing	
	(C) metal cutting	(D) forging	
74.	In order to get uniform thickne	ss of the plate by rolling process, one	provides :
	(A) camber on the rolls	(B) offset on the rolls	ð,
	(C) hardening of the rolls	(D) none of these	2
AP(M	E)	24	3
		32	14,

75.	Consi	der the fol	lowing cha	racteristic	8 :			
	(1)	The cutting	g edge is r	ormal to	the o	cutting velocity		
	(2)	The cutting	g forces oc	cur in two	dire	ections only		
	(3)	The cutting	g edge is v	vider than	the	depth of cut.		
	The c	characterist	ics applica	ble to ort	hogor	nal cutting would	include :	
	(A)	(1) and (2)		17.1 (7)	(B)	(1) and (3)	10	
	(C)	(2) and (3)			(D)	(1), (2) and (3)		
76.	Chille	s are used	in casting	moulds to	n :			
	(A)	achieve dir	ectional so	lidification	1			
	(B)	reduce pos	sibility of l	olow holes	NI .			
	(C)	reduced th	e freezing	time				
	(D)	increase th	e smoothn	ess of cast	t surf	ace		
77.	Singl	e point thr	ead cutting	g tool sho	uld i	deally have :		
	(A)	zero rake		KC*	(B)	positive rake		
	(C)	negative ra	ike		(D)	normal rake		
78.	A str	aight teeth	slab millin	g cutter of	100 r	nm diameter and	10 teeth rotat	ting
	at 20	0 r.p.m. is	used to rea	nove a lay	er of	3 mm thickness	from a steel l	bar.
	If the	table feed	is 400 mm	/minute, 1	the fe	ed per tooth in th	is operation	will
	be:		20	2 2				
	(A)	0.2 mm	2 ³⁷ =1		(B)	0.4 mm		
	(C)	0.5 mm	9 .		(D)	0.6 mm		¥
AP(M	E)			25			PA	r.o.

79.		e correct sequence of the given processes in manufacturing by powds
	(A)	bending, compacting, sintering and sizing
	(B)	bending, compacting, sizing and sintering
	(C)	compacting, sizing, bending and sintering
	(D)	compacting, bending, sizing and sintering
80.	Co	nsider the following statements:
	For	r precision machining of non-ferrous allows, diamond is preferred because
	it l	nas :
	(1)	low coefficient of thermal expansion
	(2)	high wear resistance
	(3)	high compression strength
	(4)	low fracture toughness
	Wh	ich of these statements are correct ?
	(A)	(1) and (2) (B) (1) and (4)
	(C)	(2) and (3) (D) (3) and (4)
81.		ich princely states were designated by the British as Shimla Hilles?
		Those which were not contiguous to Punjab
	(B)	Those which were on the left bank of the Satluj
	(C)	370
		Those whose rulers came from regions other than Punjab
	(D)	Those which were in the snow belt
AP(M	E)	26

	(A) Kangra	(B)	Shimla	
	(C) Chamba	(D)	Mandi	9 1
83,	On which river is Pong Dam?			· ·
	(A) Ravi	(B)	Beas	
	(C) Satluj	(D)	Swan	
84.	To which village of Solan Distri	ct does	Ajay Thakur, who w	as a member
	of Gold Medal winning men's I	⟨abbaddi	team at the 2014	Asian games,
	belong?			
	(A) Dabhota	(B)	Kandaghat	
	(C) Deoli	(D)	Kunihar	
85.	At which place in Bilaspur D	istrict o	of H.P. is Rosin an	d Turpentine
	factory ?			
1)!	(A) Kothipur	(B)	Raghnathpur	59
		(13)	Lukhannus	
	(C) Rajpura	(D)	Lakhanpur	
AP(ME)	27	1	P.T.O

82. In which district of Himachal Pradesh is Mahakali lake?

86.	With	n which distri	ct of H.	P. is	'सुलिया	टंगोई	गई जान' ('Sulia	Tangoee Ga	i Ĵaan')
	folk	song associat	ted ?			2			
	(A)	Kangra		-		(B)	Una		
	(C)	Sirmaur	1.15			(D)	Solan		
87.	Whi	ch of the follow	wing blo	ocks of	Cham	ba Di	strict has been	identified for	setting
	up 1	model schools	?				**		
	(A)	Mehla				(B)	Bhattiyat		
	(C)	Bharmaur	. 4			(D)	Chamba		
88.	Whe	ere is Bal/Bal	ika As	hram	in Shi	mla l	District ?		. , .
	(A)	Kufri				(B)	Durgapur		
	(C)	Khaneti				(D)	Mandal		
89.	In v	which district	of H.F	. is S	hah N	ehar	project ?	RV C	٠.,
70	(A)	Bilaspur				(B)	Hamirpur		
	(C)	Kangra				(D)	Solan		9
AP(M	E)				28			0	

2												
dev	elo	pped as	s solar	cities	?							
(A)	1	Shimla	and i	Mandi			(B)	Shimla	and	Dharr	nsala	
(C)		Shimla	and :	Hamirp	ur	¥	(D)	Shimla	and	Una		ure.
(#) (20)252				P. J. 1980 (1) (1) 11/4 (1)								
Wh	en	did Ir	idia w	in a Go	old M	edal i	in wre	stling in	the	Asian	Game	s bet
201	4	?										
				11	30							
(A)		1982					(B)	1986				
				S. 857								
(C)		1990					(D)	1994				8.
. In	th	e world	free	lom of p	ress	index	of 20	13 based	d on	a stud	y cond	ucted
								13 based		5		
								13 based Border's		5		
an	or	ganisa	tion c		eporte	rs w				5		
occ	or	ganisa y amo	tion c	alled Re	eporte	rs w	ithout	Border's		5		
occ	or	ganisa	tion c	alled Re	eporte	rs w		Border's		5		
an occ	or	ganisa y amo	tion c	alled Re	eporte	rs w	thout (B)	Border's		5		
an occ (A)	or sup	ganisa y amo 116 136	tion c	alled 'Re	eporte	rs W	(B)	Border's 127 140	s wha	it posi	tion de	oes Ir
an occ (A)	or sup	ganisa y amo 116 136	tion c	alled 'Re	eporte	rs W	(B)	Border's	s wha	it posi	tion de	oes Ir
an occ (A) (C)	or aup	ganisa y amo 116 136 h coun	tion co	alled 'Re	ries ?	he in	(B) (D)	Border's 127 140 tional co	s wha	it posi	tion de	oes Ir
an occ (A) (C)	or aup	ganisa y amo 116 136 h coun	tion co	alled 'Re 9 count	ries ?	he in	(B) (D)	Border's 127 140 tional co	s wha	it posi	tion de	oes Ir
an occ (A) (C)	or aup	ganisa y amo 116 136 h coun	tion co	alled 'Re 9 count	ries ?	he in	(B) (D)	Border's 127 140 tional co	s whe	it posi	tion de	oes Ir
an occ (A) (C) . Wi	or sup	ganisa y amo 116 136 h coun	tion co	alled 'Re 9 count	ries ?	he in	(B) (D) sternar	Border's 127 140 tional co	ourt	it posi	tion de	oes Ir

94	Whic	ch organisation de	es Lalitha	Kumarar	nanglam hea	ad ?	
	(A)	National Human	Rights Con	mmission			
	(B)	National Commis	sion for W	omen			
	(C)	Society for Preve	ention of C	ruelity to	Animals		
	(D)	Film Censor Bos	ard				
					COO14 N	shal Daige	n Dhonine
95.	Who	among the followi	ng is one of	the winne	ers of ZU14 N	obei Frize	in Filysics
		a 70		4			
	(A)	Eric Betzig	8	(B)	William Mo	erner	
						4	20
	(C)	Stefan Hell		(D)	Shuji Naka	mura	
96.	Wh	en was HMT com	plex Pinjor	e inaugu	rated ?		
						17	19
	(A)	1958		(B)	1960	*	
	0375						
	· con	1063	3	(D)	1965		
	(C)	1963		× 6	2000		
97.	Wh	o is the present i	nterlocutor	in the N	laga peace t	alks ?	
	(A)	R.S. Pandey		(B)	Swaraj Ka	ushal	
× =	(C)	K. Padmanabha	iah	(D)	R. N. Ravi	P.	
AP(ME)			30		22	

98.	Who among the following has been on indefinite hunger strike to prote	st against
7	human rights abuses in North-East India particularly in Man	ipur and
	demanding withdrawal of Armed Forces Special Powers Act ?	
	(A) Irom Chanu Sharmila · (B) Manjulatha Kalanidhi	
Sales Street	(C) Bandana Deori (D) Apurba Baruah	
99.	According to Prime Minister Modi what was his primary reason i	or visiting
	Kyoto during his visit to Japan ?	
	(A) Social (B) Cultural	
	(C) Economic (D) Political	
100	. Who is General Prayut Chan-o-Cha ?	
	(A) President of Korea	152
	39	
	(B) Prime Minister of Vietnam	
	(C) Prime Minister of Thailand	
	(D) Chief of Chinese Army	
AP	P(ME) 31	P.T.O.