This question paper contains 7 printed pages]

HPAS (Main)-2013

CIVIL ENGINEERING

Paper I

Time: 3 Hours

Maximum Marks: 150

- Note:— (A) Question No. 1 is compulsory. Attempt any four questions out of the remaining questions. In all, five questions are to be attempted.
 - (B) Use of relevant I.S. codes of practice and the Steel-Sections Hand-Book is permitted.
 - (C) Assume data suitably, if missing.
- (a) A bar (combined) made by connecting steel and copper rods, rigidly fixed at ends, is as shown below:

Cross-sectional area of copper bar = $\mathrm{Am^2}$ throughout. Cross-sectional area of steel bar = $\mathrm{Am^2}$ and $\mathrm{2A^2}$ for each half of the length (as shown above). Co-efficients of expansion of copper and steel are α and 1.3 α , while elastic moduli for these materials are E and 0.5 E respectively. Find the stresses induced in the bars due to rise ($t^{\circ}\mathrm{C}$) of temperature.

- (b) Determine the principal stresses on a plate, on which the principal strains acting are 3.24×10^{-4} and 1.28×10^{-4} . Values of modulus of elasticity of Poisson's ratio are 200 GN/m² and 0.25 respectively.
- (c) Briefly describe the maximum strain energy theory of failure.

- (a) Giving all the assumptions, derive the bending equation for a beam, using theory of simple bending.
 - (b) For the beam shown below, find bending moments and reactions at the supports. Also, draw the bending moment and shear force diagrams.

- (a) Prove that a three hinged parabolic arch (of span l and rise h) carrying uniformly distributed loading (WkN/m) will have zero bending moment at any section.
 - (b) Briefly describe various theorems applied in plastic analysis of structures.

P.T.O.

- (c) Describe briefly the column analogy method of structural analysis.
- 4. (a) Briefly describe the following: 3×5=15
 - (i) Effective length of a weld
 - (ii) Failure of bolted joints
 - (iii) Working stress method of R.C.C. design.
 - (b) Design a rectangular beam to carry a bending moment of 45 kNm using M-15 mix and mild steel. Use limit state method of design.
- (a) Briefly describe various systems of prestressing. 10
 - (b) Describe briefly the anchorage losses in prestress due to factors other than creep of concrete. 10

(c) A beam of 150 mm × 300 mm cross-section is prestressed by a force of 250 kN using steel cables (6 in number each of 7 mmφ) located at an eccentricity of 60 mm (below the centre-line of the beam). Find prestress loss due to concrete-creep for the following data:

 σ_{ck} = 45 N/mm², Creep co-efficient = 2, $E_s = 200 \text{ kN/mm}^2 \text{ and } E_c = 4500 \sqrt{\sigma_{ck}} \,. \qquad 10$

- 6. (a) Giving neat sketches, briefly describe various defects in timber.
 - (b) Describe briefly various constituents of a paint used in buildings.

P.T.O.

- (c) Describe in brief the procedure used for preparation of surkhi mortar.
- 7. (a) Briefly describe various time estimates used in scheduling by PERT.
 - (b) Giving neat and labelled sketches, describe each of the following briefly:
 4×5=20
 - (i) Dog-legged staircase
 - (ii) Venetian door
 - (iii) Bay window
 - (iv) Cavity wall.
 - 8. (a) Describe briefly different methods applied for obtaining flow-nets in case of flow through soils.

(b) Giving neat and labelled diagrams, describe

Rankine's theory of earth pressure in brief. 10

(c) Giving a neat and labelled sketch, describe different components of a well-foundation.

C.E.-I