This question paper contains 16+4 printed pages]

HPAS (M)-2014

CHEMISTRY

Paper II

Time: 3 Hours

Maximum Marks: 150

Note:— Attempt five questions in all. Question No. 1 is compulsory. All parts of a question must be attempted in continuation at one place.

1. (a) Give the IUPAC name of the following compound:

$$H_3C$$
— CH — CH_2 — CH_2 — $C \equiv CH$
OH

(b) Designate primary, secondary, tertiary and quaternary carbon atoms in the following compound:

(c) Assign absolute configuration as "R" or "S" to the following compound:

- (d) Ortho-xylene boils at a higher temperature than the para-xylene. Explain.
- (e) The picric acid possesses appreciable acidic property. How would you account for the fact?
- (f) Explain why the pyrrole is less basic than pyridine?
- (g) Designate aromatic, antiaromatic and non-aromatic in the following species:

- (h) What are ambident nucleophiles? Explain with suitable examples.
- (i) Arrange the following carbanions in order of their decreasing stability:

$$\stackrel{\bigcirc}{\operatorname{CH}}_3$$
, $\left(\operatorname{CH}_3\right)_2$ $\stackrel{\bigcirc}{\operatorname{CH}}$, $\left(\operatorname{CH}_3\right)_3$ $\stackrel{\bigcirc}{\operatorname{C}}$,

- (j) The sulfur content of an organic compound is 26.7%. If the organic compound contains two sulfur atoms, what is the molecular weight of the compound?
- 2. (a) A nucleophile reacts with an aldehyde to form addition product whereas it produced substitution product in the case of acyl chlorides.

 Explain.

- (b) What carboxylic acid would be formed if the malonic ester synthesis was carried out with one equivalent of malonic ester, one equivalent of 1, 5-dibromopentane and two equivalents of base?
- (c) Describe the ring-opening polymerization of propylene oxide.
- (d) Will an acyl chloride afford an amide on treatment with an aqueous solution of pyridine? Explain.
- (e) How would you prepare D-arabinose from D-glucose ? 5×6=30

- 3. (a) Write short notes on the following reaction intermediates:
 - (i) Carbocation
 - (ii) Nitrene
 - (iii) Benzyne.
 - (b) Give the main organic products A to F in the following reactions:

(i)
$$CH_3$$
 $CH_2Cl \xrightarrow{AlCl_3}$ (A) CH_3

(ii)
$$\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle \xrightarrow{Br_2}$$
 (B)

(v)
$$CH_3CH_2CH_2Br \xrightarrow{(1) Mg/ether} (F)$$

- (c) Explain why:
 - (i) Neo-menthyl chloride when treated with NaOEt/EtOH undergoes dehydrochlorination at a faster rate than menthyl chloride.

- (ii) 3-Bromopropanal undergoes base-catalyzed dehydrobromination at a faster rate than does the 2-bromopropanal.
- (d) Discuss the mechanism for an aromatic nucleophilic substitution (S_NAr) involving Meisenheimer complex.
- (e) Complete the following chemical equations:

$$\begin{array}{ccc} (iii) & - \begin{matrix} & & & \\ & & \\ & & \end{matrix} \\ & & & \end{matrix} & \xrightarrow{\begin{array}{c} & & \\ & \\ & & \end{array}} \begin{array}{c} & & \\ & & \\ & & \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & \end{array} \begin{array}{c} & & \\ & & \\ & \end{array} \begin{array}{c} & & \\ & & \\ & \end{array} \begin{array}{c} & & \\ & & \\ & \end{array} \begin{array}{c} & & \\ & & \\ & \end{array} \begin{array}{c} & & \\ & & \\ & \end{array} \begin{array}{c} & & \\ & \\ & \end{array} \begin{array}{c} & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \end{array} \begin{array}{c} &$$

$$(v) \qquad \begin{array}{c} \text{CH}_2\text{NH}_2 \\ \\ \xrightarrow{\text{HNO}_2} ? \xrightarrow{\text{H}_2\text{O}} ? \end{array}$$

5×6=30

4. (a) Explain why:

(i) Alkaline hydrolysis of alkyl halides to alcohols
is generally slow, but the reaction becomes
rapid if catalytic amounts of KI are added
to the reaction mixture.

- (ii) Vinyl halides are usually reluctant to $\label{eq:constraint} \text{undergo S}_N \text{1 reaction}.$
- (b) Discuss the role of crown ethers in phase-transfer catalysis.

(c) Predict the major products in the following reactions:

11

(

(ii)
$$R-C \equiv C-R \xrightarrow{KMnO_4}$$
 ?

- (d) How would you convert glucose into fructose and vice-versa?
- (e) Give a short account of $S_N 1$, $S_N 2$ and $S_N i$ reactions. $5 \times 6 = 30$
- 5. (a) Give the main organic products A to F in the following reactions:

(i)
$$COOH$$

$$fuming HNO_3$$
(ii) $COOH$

$$COOH$$

(iv) Br
$$\longrightarrow$$
 Cl $\xrightarrow{\text{Na}}$ (E)

(
$$v$$
) $CHCl_3 \rightarrow (F)$

- (b) Justify the following facts:
 - (i) Triphenyl methyl cation is more stable than methyl cation.

- (ii) A solution of triphenylacetic acid in conc. ${
 m H_2SO_4}$ affords ${
 m CH_3OCPh_3}$ when poured into methanol.
- (iii) Acidity of methanol is greater than t-butanol in aqueous solution.
- (c) Justify the relative rates of acetolysis of the following compounds:

- (d) How would you carry out the following transformations?
 - (i) Benzil → Benzilic acid
 - (ii) Phenol → Salicylaldehyde
 - (iii) Aniline $\rightarrow p$ -Bromoaniline
 - (iv) Toluene $\rightarrow p$ -Aminobenzoic acid
 - (v) $C_6H_5CHO \rightarrow Benzil$
 - (vi) m-dinitrobenzene $\rightarrow m$ -Nitroaniline.
 - (e) Write short notes on any three of the following:
 - (i) Fischer indole synthesis
 - (ii) Aldol condensation
 - (iii) Wolf rearrangement
 - (iv) Baeyer-Villiger oxidation. 5×6=30

- 6. (a) What is invert sugar? Explain with a suitable example.
 - (b) The mass spectra of two different cycloalkanes show a molecular ion peak at $m \mid z = 98$. One spectrum shows a base peak at $m \mid z = 69$, and the other shows a base peak at $m \mid z = 83$. Identify the cycloalkanes.
 - (c) A solution of an organic compound in ethanol shows an absorbance of 0.52 at 236 nm in a cell with a 1 cm light path. Its molar absorptivity in ethanol at that wavelength is 12,600. What is the concentration of the compound?

(d)	Describe	one	synthetic	use	of	the	following
*							=
-	reagents	\$ mgm					

- (i) SeO_2
- (ii) LiAlH₄
- (iii) n-BuLi
- (iv) NaBH₄
- (v) NBS
- (vi) HIO₄.
- (e) How would you distinguish 1, 2-, 1, 3- and 1, 4-dinitrobenzene by using ¹H-NMR and ¹³C-NMR spectroscopy? 5×6=30

- 7. (a) Treatment of $Me_3CCH = CH_2$ and $Me_3CCHOHMe$ with conc. HCl gives the two isomeric alkyl chlorides. What are these products? Explain.
 - (b) A compound $C_4H_6O_2$ shows a very strong IR band at 1721 cm⁻¹ and its NMR spectrum shows only one singlet signal. Give the structure of compound with suitable explanation.
 - (c) The acid-catalysed hydrolysis of ethylbenzoate has a "ρ" value of +0.144. What will be the effect of -I groups on the rate? Explain.

- (d) Explain, why?
 - (i) Alcohols are weaker acids than phenols but are stronger nucleophiles.
 - (ii) The rate of reaction of Ph₂CHCl in aqueous ethanol with KF to afford benzhydryl fluoride is retarded by the addition of NaCl.
- (e) Complete the following equations:

5×6=30