Booklet Serial No. : 500

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

TEST BOOKLET LECT (ASH) T.E.-PHYSICS 2016

-			(4)
Time	Allowed : 2 Hours]		[Maximum Marks: 100
	A CONTRACTOR	All questions carry equal marks.	
		INSTRUCTIONS	
1.	Immediately after the	commencement of the examination, you s	hould check that test booklet

- does not have any unprinted or torn or missing pages or items, etc. If so, get it replaced by a complete test booklet.

 2. Write your Roll Number only in the box provided alongside.

 Do not write anything else on the Test Booklet.
- This Test Booklet contains 100 items (questions). Each item comprises four responses (answers). Choose only one response for each item which you consider the best.
- 4. After the candidate has read each item in the Test Booklet and decided which of the given responses is correct or the best, he has to mark the circle containing the letter of the selected response by blackening it completely with Black or Blue ball pen. In the following example, response "C" is so marked:
 - A B D
- 5. Do the encoding carefully as given in the illustrations. While encoding your particulars or marking the answers on answer sheet, you should blacken the circle corresponding to the choice in full and no part of the circle should be left unfilled. After the response has been marked in the ANSWER SHEET, no erasing/fluid is allowed.
- You have to mark all your responses ONLY on the ANSWER SHEET separately given according to 'INSTRUCTIONS FOR CANDIDATES' already supplied to you. Responses marked on the Test Booklet or in any paper other than the answer sheet shall not be examined.
- All items carry equal marks. Attempt all items. Your total marks will depend only on the number of correct responses marked by you in the Answer Sheet. There will be no negative marking.
- Before you proceed to mark responses in the Answer Sheet fill in the particulars in the front portion of the Answer Sheet as per the instructions sent to you.
- If a candidate give more than one answer, it will be treated as a wrong answer even if one of the given answers happens to be correct.
- 10. After you have completed the test, hand over the Answer Sheet only, to the Invigilator.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

LECT (ASH) T.E.-PHYSICS 2016

Time Allowed: 2 Hours

[Maximum Marks: 100

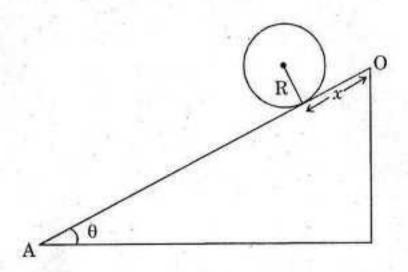
1. Which of the following forces is conservative?

(A)
$$\vec{F} = (2xy + z^2)\hat{i} + x^2\hat{j} + 2xz\hat{k}$$

(B)
$$\vec{F} = (2xy + z^2)\hat{i} + x^2\hat{j} + 4xz\hat{k}$$

(C)
$$\vec{F} = (2xy + z^2)\hat{i} + 2x^2\hat{j} + 2xz\hat{k}$$

(D)
$$\vec{F} = (4xy + z^2)\hat{i} + x^2\hat{j} + 2xz\hat{k}$$


- What must be the width of a rectangular guide so that the energy of electromagnetic radiation whose free space wavelength is 3.0 cm travels down the guide at 95% of the speed of light?
 - (A) 1.3 cm

(B) 2.6 cm

(C) 4.8 cm

- (D) 5.6 cm
- 3. Which of the following motions has non-holonomic constraint?
 - (A) Motion of a rigid body
 - (B) Simple pendulum with rigid support
 - (C) Rolling disc
 - (D) A bead on a circular wire

 A cylinder of radius R and mass M rolls down an inclined plane making an angle θ with the horizontal (as shown). Find the equation of motion (OA = S).

(A)
$$\frac{3}{2}M\ddot{x} - Mg\sin\theta = 0$$

(B)
$$\frac{1}{2}M\ddot{x} + Mg\sin\theta = 0$$

(C)
$$\frac{3}{2}M\ddot{x} + Mg\cos\theta = 0$$

(D)
$$\frac{1}{2}M\ddot{x} - Mg\cos\theta = 0$$

5. A particle moves in a plane under the influence of a force whose magnitude is:

$$\mathbf{F} = r^{-2} \left(1 - \frac{\dot{r}^2 - 2\ddot{r}r}{c^2} \right),$$

where r is the distance of the particle from the centre of force. Find the generalized potential that will result in such a force.

(A)
$$U = \frac{2}{r} (1 + \dot{r}^2 c^{-2})$$

(B)
$$U = \frac{1}{2r} (1 + \dot{r}^2 c^2)$$

(C)
$$U = \frac{1}{r} (1 + \dot{r}^2 c^{-2})$$

(D)
$$U = \frac{3}{r} (1 + \hat{r}^2 c^2)$$

6. Which of the following values of eccentricity (e) and total energy (E) correspond to elliptical orbits?

(A)
$$e > 1$$
; $E > 0$

(B)
$$e = 1$$
; $E = 0$

(C)
$$e < 1$$
; $E < 0$

(D)
$$e = 0$$
; $E = -\frac{mk^2}{2J^2}$

7. Find the values of α and β , so that the equations:

$$Q = q^{\alpha} \cos(\beta p)$$
 and $P = q^{\alpha} \sin(\beta p)$

is a canonical transformation.

(A)
$$\alpha = \frac{1}{2}, \beta = 2$$

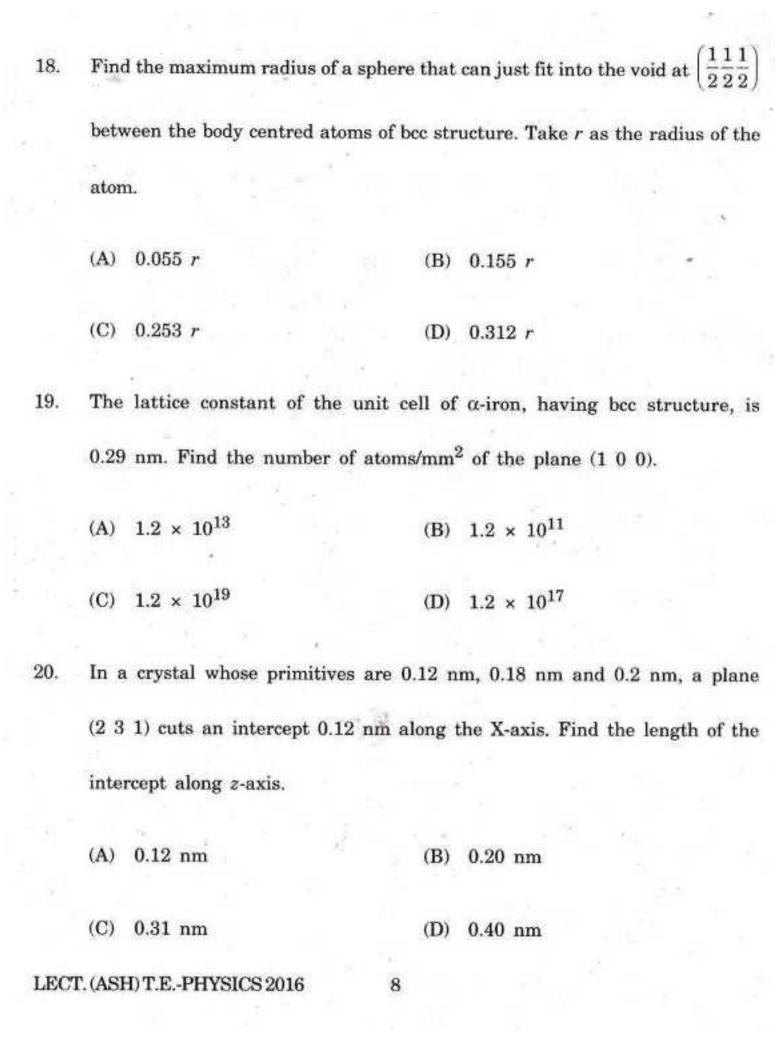
(B)
$$\alpha = 2$$
, $\beta = \frac{1}{2}$

(C)
$$\alpha = 1$$
, $\beta = \frac{1}{2}$

(D)
$$\alpha = \frac{1}{2}, \beta = 1$$

- Find the length of a rod of length 10.0 m in a frame of reference which is moving with 0.6c in a direction making angle of 30° with the rod.
 - (A) 8.5 m

(B) 9.3 m


(C) 6.9 m

(D) 10.2 m

9.	Find the speed of an electron w	hich has kinetic energy 2	.0 MeV.
	(A) 0.3×10^8 m/s	(B) 0.9×10^8 m/s	
	1.5		
	(C) 1.3×10^8 m/s	(D) 2.9×10^8 m/s	
	4		
10.	Which of the following a	toms cannot exhibit	Bose-Einstein
	condensation ?		
	(A) ¹ ₁ H	(B) ⁴ ₂ He	
,	(A) 111	(D) 211e	
	(C) 23 Na	(D) 30 K	
			100
11.	Find the skin depth for ele	ectromagnetic waves in	sea water at
-	10 ⁴ Hz.		
	30.00	A CONTRACTOR	
	(Given, $\mu=4\pi\!\times\!10^{-7}~H/m$ and c	$\sigma = 4.0 \text{ mho/m}$)	
	(A) 0.6 m	(B) 0.9 m	
	(C) 1.6 m	(D) 2.5 m	

12.	If the average density of	electrons in	ion	osphere is 6 × 10) ¹⁰ electrons/m ³ ,	iri
	find the phase velocity	of plane	elect	romagnetic wav	e of frequency	ě.
	10 ⁷ Hz.			Y		
	(A) 1.9×10^8 m/s	2	(B)	2.6×10^8 m/s		
	(C) 3.1×10^8 m/s	1 1	(D)	4.9×10^8 m/s		
13.	Assume that a particle of	an be confir	ned	to a spherical vo	lume only if its	
	circular orbit can be fitted	with an inte	gral	multiple of de Bro	oglie wavelength.	B)
	Estimate the minimum k	inetic energy	y of	a proton confined	to a nucleus of	
	diameter 10^{-14} m.				1 24	
ď	(A) 3.82 MeV		(B)	1.96 MeV		
	(C) 0.82 MeV		(D)	$0.32~\mathrm{MeV}$		
		4.73				
14.	What is the shortest way	elength emi	tted	by an X-ray tube	if 5.0 × 10 ⁴ kV	į.
	is applied across it?					
	(A) 0.0848 nm	2	(B)	0.0436 nm		
	(C) 0.0248 nm		(D)	0.0156 nm		
LECT	T. (ASH) T.EPHYSICS 2016	6				

	•		-	
15.	The mass absorption coeff	icient of alumini	um for X-rays	of a certain energy
	is 0.027 m ² /kg. What thick	kness of alumini	um would atten	uate the X-rays by
	80% ? (Density of alumin	ium = 2700 kg/	m ³)	
	(A) 2.2 m	(B)	0.2 m	•
	(C) 0.02 m	(D)	0.002 m	
16.	Electrons are accelerated	by 340 volt and	are reflected f	rom a crystal. The
*	first reflection maximum oc	curs when the gla	ancing angle is 6	0°. Find the spacing
1	of the crystal.			
	(A) 0.018 nm	(B)	0.028 nm	
,	(C) 0.038 nm	(D)	0.048 nm	
17.	In a diamond cube, the	number of atoms	s per unit volu	me is :
	(A) 8/a ³	(B)	6/a ³	
	(C) 4/a ³	(D)	$2/a^3$	
LEC	T. (ASH) T.EPHYSICS 2016	7 .		P.T.O.

21.	A particle is confined to m	ove in a one-dimensional infinite s	square well of
	width 0.2 nm. It is found	that when the energy of the parti	cle is 230 eV,
	its eigen function has 5 ar	ntinodes. Find the nature of the p	article.
	(A) proton	(B) neutron	
	(C) electron	(D) π^+ -meson	
22.	Calculations of Fermi ene	rgy (E _F) for some elements yield	the following
	results:		

Elements	$\mathbf{E_{F}}(\mathbf{eV})$
Cu	7.04
Li	4.72
Rb	1.82
Cs	1.53
Ag	5.51
K	2.12

If the Fermi velocity of the electrons in one of the elements of the above series is 0.73×10^6 m/s, identify the element.

(A) Cu (B) Rb
(C) Cs (D) Ag

- 23. Copper has a mass density of 8.9×10^3 kg/m³ and an electrical conductivity $6.4 \times 10^7 \, (\Omega m)^{-1}$ at room temperature. Find the mean free time (Atomic weight of copper = 64):
 - (A) 3.7×10^{-16} s

(B) 2.7×10^{-14} s

(C) 1.3 × 10⁻¹² s

- (D) 3.2 × 10⁻¹⁰ s
- 24. Calculate the frequency of radiation (in Hz) which must be incident on a substance placed in a magnetic field of strength (5.0 × 10⁵/π) Amp/m, so that the electrons can absorb energy.

(Given,
$$\mu_0 = 4\pi \times 10^{-7} \text{ Henry/m}; \quad \mu_B = 9.3 \times 10^{-24} \text{ Amp-m}^2$$
)

(A) 5.6×10^9

(B) 6.3 × 10¹⁰

(C) 7.2 × 10¹¹

- (D) 5.6 × 10¹²
- 25. In an n-type semiconductor, the Fermi level lies 0.4 eV below the conduction band. If the concentration of donor atoms is doubled, find the new position of the Fermi level.

(Take,
$$K_BT = 0.03 \text{ eV}$$
)

- (A) 0.38 eV below the conduction band
- (B) 0.38 eV above the conduction band
- (C) 0.80 eV below the conduction band
- (D) 0.20 eV below the conduction band

26.	If all the molecular dipoles in a 1.0	0 cm radius water drop are pointed in the
	same direction, calculate the inter	nsity of polarization. Dipole moment of a
	water molecule is 6.0 × 10 ⁻³⁰ C-r	m.

(A)
$$3.6 \times 10^{-12} \text{ C/m}^2$$

(B)
$$8.4 \times 10^{-10} \text{ C/m}^2$$

(C)
$$2.9 \times 10^{-8} \text{ C/m}^2$$

(D)
$$1.6 \times 10^{-6} \text{ C/m}^2$$

27. A water drop of radius 10⁻⁷ m is charged by an electron and is placed in an electric field. What should be the intensity of the electric field that can keep the drop stationary?

(A) 400 V/m

(B) 326 V/m

(C) 256 V/m

(D) 181 V/m

28. The constant α of a transistor is 0.95. What would be the change in the collector current corresponding to a change of 0.4 mA in the base current in a common emitter arrangement?

(A) 2.3 mA

(B) 3.6 mA

(C) 5.1 mA

(D) 7.6 mA

29. If P_{ab} is the probability of finding a particle in the range (a < x < b) at time t and J(x, t) is the probability current, then :

(A)
$$\frac{dP_{ab}}{dt} = J(a, t) - J(b, t)$$

(B)
$$\frac{dP_{ab}}{dt} = (J(a, b) - J(b, t))^2$$

(C)
$$\frac{dP_{ab}}{dt} = J(a, b) + J(b, t)$$

(D)
$$J_{ab} = J(a, b) - J(b, t)$$

30. Which of the following relations corresponds to:

$$\Psi(x, t) = a\Psi_1(x) e^{-\frac{iE_1t}{\hbar}} + b\Psi_2(x) e^{-\frac{iE_2t}{\hbar}}$$

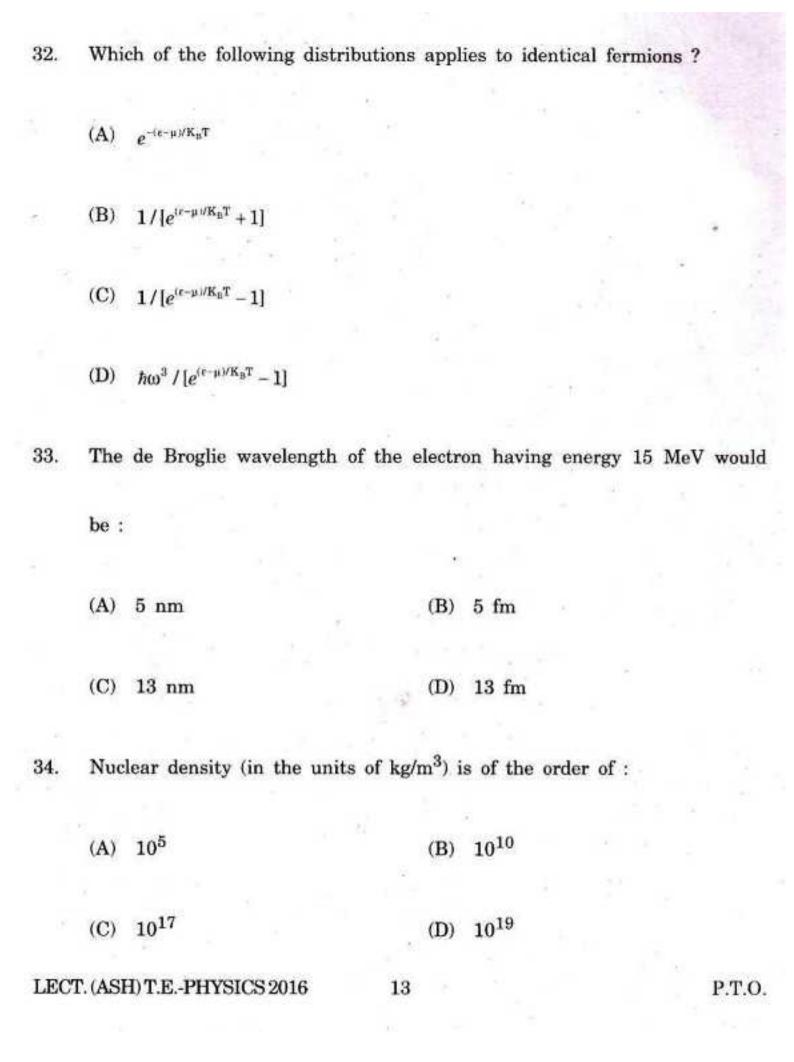
where a, b, Ψ_1 and Ψ_2 are real.

(A)
$$\Delta E \cdot \Delta t = \hbar / 2$$

(B)
$$\Delta E \cdot \Delta t < \hbar/2$$

(C)
$$\Delta \mathbf{E} \cdot \Delta t = 2\pi \hbar$$

(D)
$$\Delta \mathbf{E} \cdot \Delta t = 0$$


31. Quantum mechanically, the allowed energies of rigid rotator are :

(A)
$$E_n = \frac{\hbar^2 n^2}{ma^2}$$
; $n = 0, 1, 2 \dots$

(B)
$$E_n = \frac{\hbar^2 (n+1)^2}{m\alpha^2}$$
; $n = 0, 1, 2 \dots$

(C)
$$E_n = \frac{\hbar^2 n(n+1)}{ma^2}$$
; $n = 0,1,2$

(D)
$$E_n = \frac{\hbar^2 n^2 (n+1)^2}{ma^2}$$
; $n = 0, 1, 2 \dots$

		22		× = 1		
35.	A singly charged posi-	tive ion is a	ccelerate	d through	a potential d	ifference
	of 1000 V in a mass sp	ectrograph.	It then pa	asses throu	gh a uniform r	nagnetic
	field of 1500 Gauss,	and then	deflected	into a cir	cular path o	f radius
	0.122 m. What is the	mass numb	per of the	e ion ?		
	(A) 20		(B)	16	•	
	(C) 8	1	(D)	4 .		
36.	Which of the follo	wing sequ	ences r	epresents	the correct	magic
	numbers ?	10				
	(A) 2, 8, 20, 38, 52,	80, 126	62			
	(B) 2, 8, 20, 28, 50,	82, 126				
	(C) 2, 8, 28, 36, 50,	82, 128	83	•		7
	(D) 2, 8, 20, 32, 52,	80, 126			1	
37.	When a proton is bor	mbarded on	a hydrog	gen nucleus	s, the Coulom	b barrier
	is about:				\$	
	(A) 1.2 MeV		(B)	1.6 MeV		
	(C) 1.8 MeV		(D)	2.2 MeV		
LEC	CT. (ASH) T.EPHYSICS 2	016	14			

38. Find the energy liberated if 10 kg of ²H undergoes the following fusion reaction:

$$5_1^2 \text{H} \rightarrow_2^3 \text{He} +_2^4 \text{He} +_1^2 \text{H} +_0^1 n + 25 \text{ MeV}$$

(A) $4.2 \times 10^8 \text{ J}$

(B) $2.3 \times 10^{10} \text{ J}$

(C) $1.69 \times 10^{13} \text{ J}$

(D) 2.42 × 10¹⁵ J

39. ²⁴Na emits two γ-rays of energy 1378 keV and 2754 keV, respectively. Calculate the relative intensities of the two γ-rays after they have passed through 55.0 gm/cm² of Pb (ρ = 11.0 gm/cm³). The linear absorption coefficients are 0.5 cm⁻¹ for the 2754 keV and 0.6 cm⁻¹ for the 1378 keV γ-rays.

(A) 1.65

(B) 1.02

(C) 0.82

(D) 0.31

40. Deuterons are to be accelerated with a cyclotron. If its magnet produces a flux density of 2.5 T, what must be the frequency of the oscillating potential applied across the dees ?

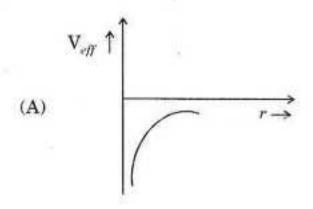
(A) 42.3 MHz

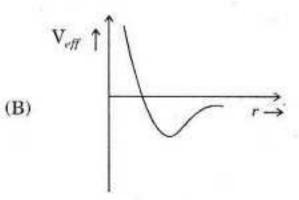
(B) 33.6 MHz

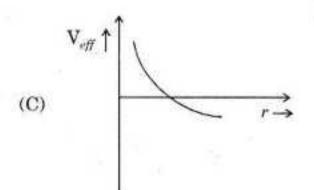
(C) 28.3 MHz

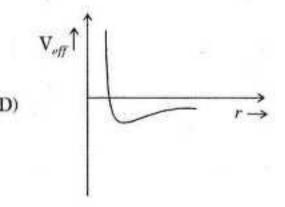
(D) 18.9 MHz

41.	Which of the following det	ectors provides electrical signal?	
	(A) Bubble chamber	(B) Cloud chamber	
	(C) Scintillation counter	(D) GM counter	*
42.	Which of the following rea	ctions is allowed?	
	(A) $\Lambda \to \bar{p} + \pi^+$	(B) $\Lambda \rightarrow p + \pi^-$	
	(C) $\pi^+ + n \rightarrow K^0 + K^+$	(D) $n \rightarrow p + e^+ + v_e$	
43.	An antiproton comes to re	st and annihilates with a proton.	They produce
	π^+ , π^- and π^0 of equal energy	rgy. What is the average kinetic	energy of each
	pion in MeV ?		
	(A) 487	(B) 317	
	(C) 135	(D) 62	
LEC	T. (ASH) T.EPHYSICS 2016	16	


44. The probability current density of a spherical wave, Ψ(r) = Ae^{ikr} / r, travelling outward from a point is:


(B)
$$\frac{\hbar k}{mr^2} |\mathbf{A}|^2$$


(C)
$$\frac{k}{r^2}|\mathbf{A}|^2$$


(D)
$$\frac{\hbar k}{m} |\mathbf{A}|^2$$

45. A particle of mass m is moving in the direction of r in a field of effective potential, $V_{eff} = -\frac{zz^{i}e^{2}}{r} + \frac{l(l+1)\hbar^{2}}{2mr^{2}}$. Which of the following graphs best represents V_{eff} for l=1?

46. The possible eigen vectors of

$$S_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

are:

(A)
$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

(B)
$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$$
, $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}$

(C)
$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$$
, $\frac{1}{\sqrt{2}} \begin{pmatrix} -i \\ 1 \end{pmatrix}$

(D)
$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

47. An operator \hat{p} describing the interaction of two spin-1/2 particles is $\hat{P} = a + b\vec{\sigma}_1$, $\vec{\sigma}_2$, where a and b are constants, and $\vec{\sigma}_1$ and $\vec{\sigma}_2$ are Pauli matrices. If \hat{S} is the total spin of the particles, then:

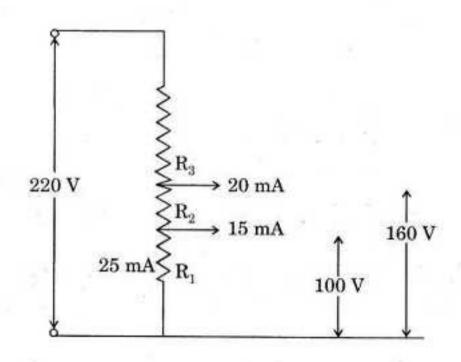
(A)
$$\left[S^2, \hat{P}\right] = h$$

(B)
$$\left[S^2, \hat{P}\right] = i\hbar S_{\epsilon}$$

(C)
$$\left[\mathbf{S}^2, \hat{\mathbf{P}}\right] = 0$$

(D)
$$\left[S^2, \hat{P}\right] = (a+b)$$

48. A rigid rotator in a plane is acted by a perturbation represented by $H' = \frac{V_0}{2} \left(3\cos^2\phi - 1\right), \text{ where } V_0 \text{ is a constant. Calculate the first order correction}$ to the ground state energy.


(A)
$$\frac{V_0}{2}$$

(C)
$$\frac{V_0}{4}$$

(D)
$$\frac{V_0^2}{4}$$

49.	In the context of partial wave analysis, the ratio of differential and total						
	scattering cross-sections for s-wave scattering is:						
	(A) $4\pi/k^2$						
	(B) $k^2/4\pi$						
	(C) 1/4π						
	(D) $4\pi \sin^2 \theta$, where θ is the	e scattering angle					
50.	A distant galaxy is receding fi	rom the earth at 6.1×10^7 r	n/s. By how much				
	is a green spectral line of wavelength 500 nm emitted by the galaxy shifted						
	towards the red end of the s	pectrum ?					
	(A) 115 nm	(B) 170 nm					
	(C) 185 nm	(D) 209 nm	(+1)				
51.	Point out the correct order of e	lectromagnetic spectrum in tl	ne increasing order				
	of the wavelength.						
	(A) Visible, X-rays, γ-rays, I	Radio waves, Microwaves					
	(B) Radio waves, Microwave	es, Visible, X-rays, γ-rays					
	(C) γ-rays, Radio waves, X-rays, Visible, Microwaves						
	(D) γ-rays, X-rays, Visible, I	Microwaves, Radio waves					
LEC	CT. (ASH) T.EPHYSICS 2016	19	P.T.O.				

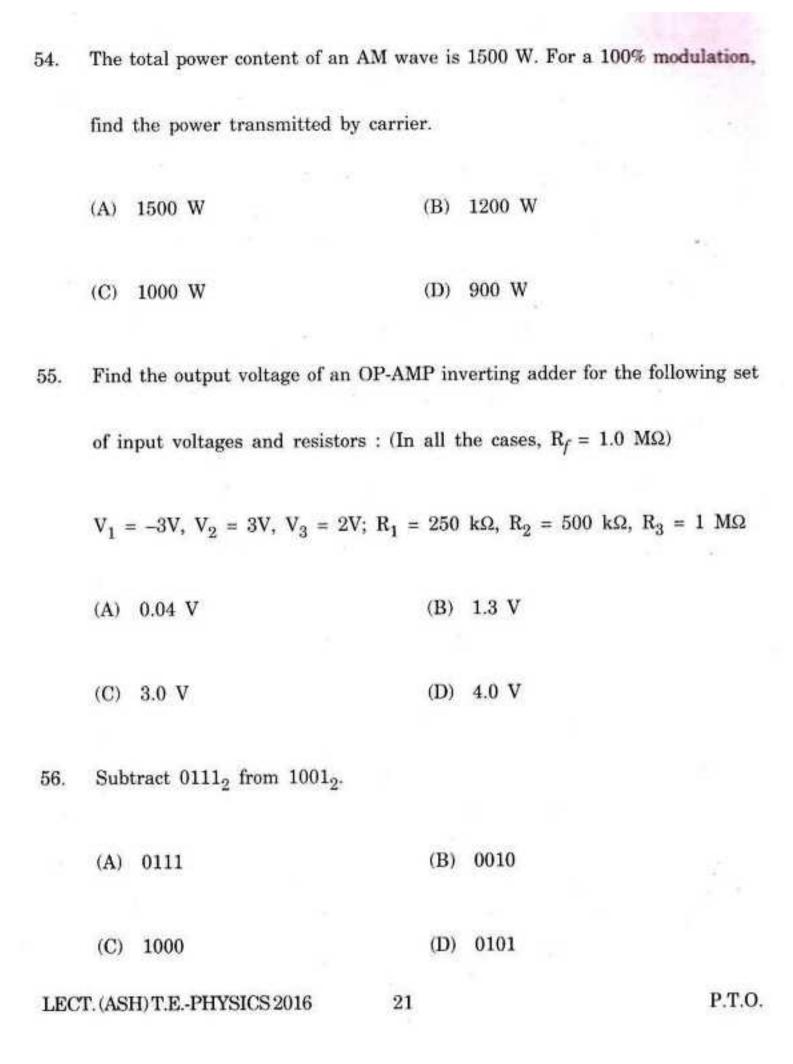
52. A tapped voltage divider is to be connected across a 220 V dc supply to provide outputs of 15 mA at 100 V and 20 mA at 160 V (as shown in figure). Find the total resistance of the divider.

(A) 2500 Ω

(B) 3500 Ω

(C) 4500 Ω

(D) 6500 Ω


53. A multiplate capacitor is made up of 10 plates 4 cm \times 5 cm separated by mica sheets having thickness of 1.0 mm and a relative permittivity $\epsilon_r = 6$. Find its capacitance.

(A) 956 pF

(B) 733 pF

(C) 691 pF

(D) 569 pF

57. Which of the following Boolean identities is correct?

(A)
$$(A + B) (A + \overline{B}) (\overline{A} + C) = AB$$

(B)
$$(A + B) (A + \overline{B}) (\overline{A} + C) = (A + B)$$

(C)
$$(A + B) (A + \overline{B}) (\overline{A} + C) = AC$$

(D)
$$(A + B) (A + \overline{B}) (\overline{A} + C) = (A + C)$$

58. Find the density of impurity atoms (in m⁻³) that must be added to an intrinsic silicon crystal to convert it to 10⁻² ohm.m N-type silicon.

(Take, electron mobility for silicon = 0.13 m²/volt.s)

(A) 4.6×10^{21}

(B) 3.2×10^{20}

(C) 1.7×10^{19}

(D) 0.9 × 10¹⁸

59. In an N-P-N transistor, 10¹⁰ electrons enter the emitter in 10⁻⁶s. 2% of the electrons are lost in the base. Calculate the current amplification factor.

(A) 29

(B) 32

(C) 49

(D) 57

60.	The mid-frequency gain of	an RC coupled	amplifier is 2	00, and the lower
	and upper cut-off frequencies	s are 50 Hz ar	d 100 kHz, resp	pectively. Find the
	frequency in the low frequen	ncy range at v	which the gain	is reduced to 150.
	(A) 21.9 Hz	(B)	34.5 Hz	
	(C) 43.4 Hz	(D)	56.8 Hz	
61.	A phase shift oscillator uses th	nree identical R	C sections in the	feedback network.
	The values of components are	e R = 100 kΩ ar	ad C = 0.01 μF.	Find the frequency
	of oscillation.	200		
	(A) 100.2 Hz	(B)	50.4 Hz	
	(C) 16.8 Hz	(D)	10.3 Hz	
62.	γ-rays (photons) are scattered	ed from electro	ons initially at	rest. If γ-rays are
45	backscattered and their energ	gy E >> $m_e c^2$;	the energy of th	e scattered photon
	is:			
	(A) 0.5 MeV	(B)	0.25 MeV	
	(C) 0.15 MeV	(D)	0.09 MeV	
LECT	C.(ASH) T.EPHYSICS 2016	23		P.T.O.

63. For a one-dimensional harmonic oscillator, the value of $\oint pdx$ is:

(A)
$$\frac{\pi E}{\omega}$$

(B)
$$\frac{2E}{\omega}$$

(C)
$$\frac{2\pi E}{\omega}$$

(D)
$$\frac{4\pi E}{\omega}$$

64. The maximum kinetic energy transferred to a proton when hit by a photon of energy hv is:

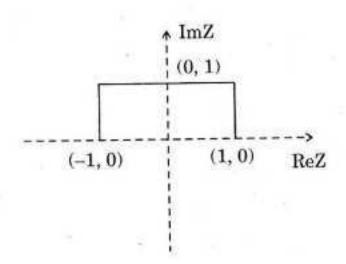
(A)
$$\frac{hv}{1 + \frac{m_p c^2}{2hv}}$$

$$(B) \quad \frac{hv}{1 - \frac{m_p c^2}{2hv}}$$

(C)
$$\frac{2h^2v^2}{m_pc^2}$$

(D)
$$\frac{hv}{1 + \left(\frac{m_{\rho}c^2}{2hv}\right)^2}$$

65. Consider a matrix \hat{A} , a ket $|\Psi\rangle$ and a ket $|\phi\rangle$:


$$\hat{\mathbf{A}} = \begin{pmatrix} 5 & 3+2i & 3i \\ -i & 3i & 8 \\ 1-i & 1 & 4 \end{pmatrix}; \quad |\Psi\rangle = \begin{pmatrix} -1+i \\ 3 \\ 2+3i \end{pmatrix}; \quad |\phi\rangle = \begin{pmatrix} 6 \\ i \\ 5 \end{pmatrix}$$

Find $< \phi |\hat{A}|\Psi >$

(A)
$$23 + 55i$$

(C)
$$2 + 15i$$

The value of the integral $\int_C dz z^2 e^z$, where C is an open contour in the complex 66. z-plane (as shown) is:

(A)
$$\frac{5}{e} + e$$

(C) $\frac{5}{e} - e$

(B)
$$e - \frac{5}{e}$$

(C)
$$\frac{5}{e} - e$$

(D)
$$-\frac{5}{e} - e$$

The generating function $F(x, t) = \sum_{n=0}^{\infty} P_n(x) t^n$ for the Legendre polynomials 67. $P_n(x)$ is $F(x, t) = (1 - 2xt + t^2)^{-1/2}$. The value of $P_3(-1)$ is :

(A) 5/2

(B) 3/2

(C) +1

A 3 × 3 matrix M has Tr [M] = 6, Tr [M²] = 26 and Tr [M³] = 90. Which 68. of the following can be the possible set of eigen values of M?

(A) -1, 1, 4

(B) −1, 0, 7

(C) -1, 3, 4

(D) -2, 2, 4

LECT. (ASH) T.E.-PHYSICS 2016

69.	Let $u(x, y) = x + \frac{1}{2}(x^2 - y^2)$ is the real part of analytic function $f(z)$ of the complex
	variable $z = x + iy$. The imaginary part of $f(z)$ is:
	(A) $y + xy$ (B) xy
	(C) y (D) $y^2 - x^2$
70.	To detect trace amounts of gaseous species in a mixture of gases, the preferred
	probing tool is:
	(A) Laser spectroscopy
	(B) Ionization spectroscopy with X-rays
	(C) NMR spectroscopy
	(D) ESR spectroscopy
71.	The far infrared rotational absorption spectrum of a diatomic molecule shows
	equilibrium lines with spacing 40 cm ⁻¹ . The position of the first Stokes line
	in the rotational Raman spectrum of this molecule is :

LECT. (ASH) T.E.-PHYSICS 2016

(A) 20 cm^{-1}

(C) 80 cm^{-1}

(B) 40 cm⁻¹

(D) 120 cm⁻¹

- 72. Which of the following statements is not true as a consequence to predict the fact that the ground state of deuteron is a mixture of s- and d- states?
 - (A) It has a non-zero quadrupole moment
 - (B) The n-p interaction is non-central
 - (C) The orbital wave function is not spherically symmetric
 - (D) He Hamiltonian does not conserve the total angular momentum
- 73. In LHC experiment, the Higgs boson (H) was found to decay into a photon and a Z-boson. If the rest masses of Higgs and Z bosons are 125 GeV/c² and 90 GeV/c², respectively, the energy of the photon will be (Take the decaying Higgs particle at rest).
 - (A) 43 GeV

(B) 35√3 GeV

(C) 30 GeV

- (D) 20√3 GeV
- 74. Which of the following sets of Maxwell relations is correct?

(A)
$$T = \left(\frac{\partial U}{\partial V}\right)_{S}$$
 and $P = \left(\frac{\partial U}{\partial S}\right)_{V}$

(B)
$$V = \left(\frac{\partial H}{\partial P}\right)_S$$
 and $T = \left(\frac{\partial H}{\partial S}\right)_P$

(C)
$$P = -\left(\frac{\partial G}{\partial V}\right)_T$$
 and $V = \left(\frac{\partial G}{\partial P}\right)_S$

(D)
$$P = -\left(\frac{\partial A}{\partial S}\right)_T$$
 and $S = \left(\frac{\partial A}{\partial P}\right)_V$

75. For an ideal Fermi gas, the electron velocity (V_F) at the Fermi surface is related to the electron concentration (n) as:

(A) $V_p \propto n^{2/3}$

(B) $V_F \propto n$

(C) $V_F \propto n^{1/2}$

(D) $V_F \propto n^{1/3}$

76. A particle of unit mass moves along the X-axis under the influence of a potential,
V(x) = x(x-2)². The particle is found to be in stable equilibrium at the point
x = 2. The time period of oscillation of the particle is:

(A) π

(B) π/2

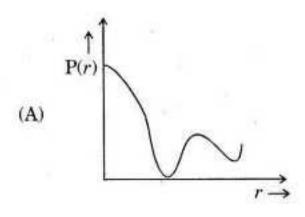
(C) 3π/2

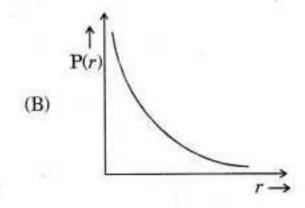
(D) 2π

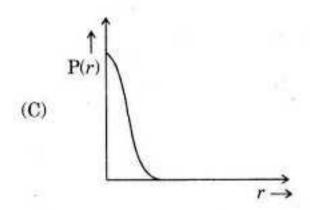
77. The Hall coefficient of sodium depends on :

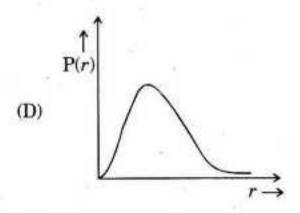
- (A) The effective charge carrier mass and carrier density
- (B) The charge carrier density and relaxation time
- (C) The charge carrier density only
- (D) The effective charge carrier mass

78. Which of the following wave functions is quantum mechanically acceptable?


(A)
$$\frac{e^{-\omega}}{r^4}$$


(C)
$$e^{-i\alpha x}e^{-\beta (x^2+y^2+z^2)}$$


(D)
$$\sin(\alpha r)$$


79. The value of α for which $\Psi_1=\phi_0-2\phi_1+3\phi_2$ is orthogonal to $\Psi_2=\phi_0-\phi_1+\alpha\phi_2$ is :

80. The radial probability density, P(r), for the hydrogen atom in the ground state is best represented by:

81.	What was the approximate increase in male literacy in HP between 2001						
	and 2011 (in percentage term	s) ?					
	(A) 5.48	(B) 6.35					
	(C) 7.88	(D) 9.15					
82.	In which district of H.P. is M	Iadhav Rai Mandir ?					
		1200 p. 1 44 200 1 (1200 p.)					
•	(A) Kullu	(B) Mandi					
	(C) Bilaspur	(D) Solan					
83,	Identify the correct chronologi	cal order of the founding of fe	ollowing princely				
5	states?	381					
			. 1.34				
	(A) Mandi-Kullu-Suket	(B) Suket-Mandi-Ku	llu				
	(C) Suket-Kullu-Mandi	(D) Kullu-Suket-Mar	ndi				
84.	When was the Jagirdar of	Kutlchar conferred the title	of Raja by the				
	British ?		0 .7: 1				
			w*				
	(A) 1901	(B) 1909					
	(C) 1917	(D) 1929					
LEC	T. (ASH) T.EPHYSICS 2016	30					
			Mi				

85.	5. In which District of H.P. is Chander Nahan lake?			
	(A) Shimla	(B) Sirmaur		
	(C) Kullu	(D) Solan		
86.	On the Amavasya (new mo	on) of which month is Diwali celebrate	d ?	
	(A) Asauj	(B) Kartik		
	(C) Magh	(D) Paush		
87.	At which place in Hamirpur	District of H.P. has the H.P.M.C. been sa	nctioned	
	funds for setting up vegeta	ble pack house ?		
	(A) Rail	(B) Sujanpur		
	(C) Nadaun	(D) Bhota	4%	
88.	How many panchayats of H	.P. are covered under the World Bank ai	ded Mid	
	Himalayan Watershed Dev	elopment Project after additional financ	ing ?	
	(A) 710	(B) 830		
	(C) 880	(D) 920		
LECT	r. (ASH) T.EPHYSICS 2016	31	P.T.O.	

89.	In which river basin is Killar hydel project ?						
	(A)	Chenab	(B)	Ravi		
	(C)	Satluj	(D)	Beas		
90.	Who was the Deputy Speaker of First H.P. Vidhan Sabha?						
	(A)	Vidya Dhar	((B)	Tapinder Singh		
	(C)	Krishan Chander		(D)	Lekh Ram Thakur		
91.	Witl	h which of the following i	s village	e Di	nudike of Punjab associated?		
2	(A)	Shaheed Bhagat Singh		(B)	Lala Lajpat Rai		
4	(C)	Madan Lal Dhingra		(D)	Kartar Singh Saraba		
92.	Identify the Governor of Arunachal Pradesh who recommended President's						
	rule	in the state in January	2016 ?				
	(A)	Anil Goswami		(B)	Jyoti Prashad Rajkhowa		
	(C)	Aziz Qureshi		(D)	Nabam Tuki		
LEC	T. (AS	H) T.EPHYSICS 2016	32				

93.	Where is Palais Roy	vale which is said	d to	be India's tallest sl	tyscraper ?
	(A) New Delhi		(B)	Kolkata	
	(C) Bengaluru		(D)	Mumbai	
94.	According to India	n census, what	is tl	he minimum popul	ation for the
	classification of city	?			
	(A) One Lakh		(B)	Five Lakhs	
	(C) Ten Lakhs		(D)	Fifty Lakhs	
95.	What is India's rank	according to Tr	ansp	arency Internationa	l's Corruption
	Perception Index, 20	015 ?			
	(A) 38	,	(B)	47	
	(C) 55		(D)	76	
96.	Who won the men	singles title of th	ne Au	ustralian Open 2016	?
	(A) Andy Murray		(B)	Rafael Nadal	*
	(C) Roger Federer		(D)	Novak Djokovic	
LEC	T. (ASH) T.EPHYSICS	2016 33			P.T.O.

97.	Approximately what percentage seats did Aung San Suu Kyi's National League					
	For Democracy win in November 2013	5 parl	liamentary elections in Myanmar?			
	(A) 55 percent	(B)	65 percent			
	(C) 70 percent	(D)	80 percent			
98.	Where is Triton island?					
	(A) in Arabian Sea	(B)	in Red Sea			
	(C) in South China Sea	(D)	in Mediterranean Sea			
99.	What is the capital of Syria ?					
	(A) Damascus	(B)	Khartoun			
	(C) Juka	(D)	Sanaa			
100.	Which leader of the Republican Party of U.S.A. is advocating ban on the entry					
	of Muslims to the United States ?	+ 1				
	(A) Jeb Bush	(B)	Chris Christie			
	(C) Donald Trump	(D)	Ted Cruz			
LEC	T. (ASH) T.EPHYSICS 2016 34					