DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

TEST BOOKLET SERIES

TEST BOOKLET LECT (MECH.) T.E. 2016

Time	e Allowed : 2 Hours	[Maximum Marks : 100
	All questions carry equal r	marks.
	INSTRUCTIONS	1
1.	Immediately after the commencement of the examina	tion, you should check that test booklet

- Immediately after the commencement of the examination, you should check that test booklet does not have any unprinted or torn or missing pages or items, etc. If so, get it replaced by a complete test booklet.
- Encode clearly the test booklet series A, B, C or D as the case may be in the appropriate place in the answer sheet.
- 3. Write your Roll Number only in the box provided alongside.

 Do not write anything else on the Test Booklet.
- This Test Booklet contains 100 items (questions). Each item comprises four responses (answers). Choose only one response for each item which you consider the best.
- 5. After the candidate has read each item in the Test Booklet and decided which of the given responses is correct or the best, he has to mark the circle containing the letter of the selected response by blackening it completely with Black or Blue ball pen. In the following example, response "C" is so marked:
 - (A) (B) (D)
- 6. Do the encoding carefully as given in the illustrations. While encoding your particulars or marking the answers on answer sheet, you should blacken the circle corresponding to the choice in full and no part of the circle should be left unfilled. After the response has been marked in the ANSWER SHEET, no erasing/fluid is allowed.
- 7. You have to mark all your responses ONLY on the ANSWER SHEET separately given according to 'INSTRUCTIONS FOR CANDIDATES' already supplied to you. Responses marked on the Test Booklet or in any paper other than the answer sheet shall not be examined.
- All items carry equal marks. Attempt all items. Your total marks will depend only on the number of correct responses marked by you in the Answer Sheet. There will be no negative marking.
- Before you proceed to mark responses in the Answer Sheet fill in the particulars in the front portion of the Answer Sheet as per the instructions sent to you.
- If a candidate give more than one answer, it will be treated as a wrong answer even if one of the given answers happens to be correct.
- 11. After you have completed the test, hand over the Answer Sheet only, to the Invigilator.

LECT (MECH.) T.E. 2016

11me	Allo	wed : 2 Hours		[Maximum Marks : 100
1.	Whi	ich of the following is on the ba	ınk o	f Ravi ?
	(A)	Khajiyar	(B)	Parel
	(C)	Banikhet	(D)	Dalhousie
2.	Whi	ch pass joins Kinnaur and Tibe	t ?	70 Factor
	(A)	Chobu	(B)	Padri
	(C)	Shipki	(D)	Kunjam
3.	Whi	ch raja of Chamba was killed b	y raj	a Sansar Chand of Kangra ?
	(A)	Raj Singh	(B)	Umed Singh
*	(C)	Jit Singh	(D)	Sri Singh
4.	Who	founded the Mandi princely	sta	te at Bhinli in the thirteenth
	cent	ury ?	100	
	(A)	Hira sen	(B)	Bir sen
	(C)	Jai sen	(D)	Ban sen
5.	Whe	n did Ram Singh attack Shahp	ur ar	nd drove out the British ?
	(A)	July 1846	(B)	December 1847
	(C)	August 1848	(D)	January 1849
ECT	(ME)	CH)TE 2016—D		

6.	In v	which District of H.P.	is Giri Bata hy	del project ?	
	(A)	Solan	(B)	Sirmaur	
	(C)	Shimla	(D)	Mandi	
7.	In v	vhich month is Minja	r fair of Chamb	a celebrated ?	
	(A)	July	(B)	August	A *.
	(C)	September	(D)	October	
8.	At v	which place in Una Di	istrict of H.P. a	state-of-the Art Indus	strial Area is
	bein	g developed ?			
8	(A)	Pandoga	(B)	Lohara	
	(C)	Mairi	(D)	Thanakalan	*
9.	With	h which of the follow	ing initiatives is	NABARD associated	d in H.P. ?
	(A)	Micro credit			
	(B)	Minor irrigation			
111	(C)	Development of rura	al infrastructure		
	(D)	All of the above			
10.	In v	which District of H.P.	was film star	Yami Gautam born ?	
	(A)	Chamba	(B)	Bilaspur	, as — s
	(C)	Shimla	(D)	Solan	
LEC'	T (MI	ECH.) T.E. 2016—D	3	* = , H	P.T.O

11.	Who	is the author of A State in Deni	al Pai	kistan's Misguided and Dangerous
	Crus	sade ?		
	(A)	Harish Khare	(B)	B.G. Verghese
	(C)	Salman Rushdie	(D)	Yashwant Sinha
12.	Wit	h which Indian community	is the	e custom of Paryushan Parva
	asso	ciated ?		
*	(A)	Parsis	(B)	Jews
	(C)	Sikhs	(D)	Jains
13.	On	which day is Vijay Diwas celeb	rated	?
	(A)	September 30	(B)	October 12
	(C)	November 9	(D)	December 16
14.	Whi	ch airline's tag line is 'Serving	Custo	omers with a Smile'?
	(A)	Air India	(B)	Jet Airways
	(C)	Go Air	(D)	Kingfisher
15.	Aro	und which year did Gandhiji se	t up	his Sabarmati Ashram ?
	(A)	1917	(B)	1927
	(C)	1929	(D)	1931
LEC	T (MI	ECH.) T.E. 2016—D 4		

(C) Inc	ssia donesia as the venue of WTO sum	(B) (D) mit hel	Spain Jamaica d during December 15-19	
(C) Inc	donesia as the venue of WTO sum	(D)	Jamaica	
	as the venue of WTO sum			
17. What w		mit hel	d during December 15-19	
70			d during December 10-13	9, 2015 ?
(A) Na	irobi	(B)	Doha	
(C) Br	ussels	(D)	Paris	
18. Which	of the following was inducte	d as D	eputy Prime Minister of	Nepal in
October	, 2015 ?			
(A) Ag	ni Kharel	(B)	Som Pandey	
(C) Bi	ay Kumar Gachhadar	(D)	Haribol Gajurel	
19. Who wa	as sworn in as Prime Mini	ster of	Canada in November, 2	015 ?
(A) Pi	erre Elliot Trudeau	(B)	Stephen Harper	
(C) Ju	stin Trudeau	(D)	Margret Sinclair	1.8
20. In whic	h of the following mosques i	n Nige	ria bomb blast occurred in	October
2015 ki	lling at least 55 people ?			
(A) M	aiduguri	(B)	Yola	
(C) Ke	erawa	(D)	All of these	
LECT (MECH	.) T.E. 2016—D	4.	*	P.T.O.

21.	The position of centre of pressure of a plane surface immersed in a static
	fluid is:
5.7	(A) at the centroid of the immersed surface
	(B) always above centroid
	(C) always below centroid
	(D) none of the above
22.	A Lewis bolt is a/an:
	(A) foundation bolt (B) stud bolt
	(C) eye bolt (D) tap bolt
23.	An ideal gas is filled in a balloon kept in an evacuated and insulated room.
	When the balloon ruptures, the gas fills up the entire room. Now internal
	energy of gas and the enthalpy of gas at the end of this
	process.
	(A) increases, increases, (B) constant, decreases
	(C) constant, constant (D) decreases, increases
24.	Moment of Inertia of an area dA at a distance x from a reference axis
	is:
	(A) $\int x dA$ (B) $\int x^2 dA$
	(C) $\int x^3 dA$ (D) $\int x^4 dA$
25.	Junker's gas calorimeter is used to determine the calorific value of:
-	(A) gaseous fuels (B) petrol
	(C) coke (D) all fuels
LECT	T (MECH.) T.E. 2016—D

		- 145			
	(A)	linear velocity	(B)	angular velocity	
	(C)	displacement	(D)	rate of change of angula	r velocity
27.	The	weld bead between a he	eavy steel sectio	n and a thin section occu	rs mainly
	due	to the formation of:			
	(A)	bainite	(B)	spheroidite	
	(C)	martensite	(D)	none of these	- X
28.	In	type of centrifu	gal pump the ir	npeller is surrounded by	the spiral
	casi	ng.			9
	(A)	involute	(B)	bevel	
	(C)	volute	(D)	spur	
29.	In S	SHM is always	proportional to	displacement.	
	(A)	angular velocity	(B)	acceleration	
	(C)	time period frequency	(D)	mass ratio	
30.		is used as an al	loying element	to enhance the endurance	strength
	of s	teel materials.			
	(A)	Tungsten	(B)	Molybdenum	389
	(C)	Nickel	(D)	Vanadium	
LEC'	T (ME	ECH.) T.E. 2016—D	7		P.T.O.

26. The acceleration, in a simple harmonic motion, is proportional to:

	(A)	Arithmetic progression	(B)	Binary numbers
	(C)	geometric progression	(D)	None of these
32.	The	no. of inversions for a slider cr	ank n	nechanism is
	(A)	4	(B)	8
	(C)	6	(D)	0
33.	The	arm and body motion of a cylin	drical	configuration robot comprising of
		rotary motions and	line	ear motions.
	(A)	two, two	(B)	zero, three
	(C)	three, zero	(D)	one, two
34.	In	casting expendable patte	ern is	used.
	(A)	die	(B)	squeeze
	(C)	investment	(D)	continuous
35.	The	velocity of any point 'P' on a boo	ly rota	ating with angular velocity 'ω' and
	with	n instantaneous centre of rotation	on T i	is equal to:
	(A)	ΙΡ/ω	(B)	$IP\omega$
	(C)	IP/ω^2	(D)	$IP\omega^2$
LECT	(ME	CH)TE 2016—D 8	10	the second secon

The different speeds on a lathe are provided in:

31.

36.	Aton	nic packing	factor is:					
	(A)	volume fra	action of atoms	in cell				
	(B)	distance b	etween two ad	jacent aton	ns			
	(C)	Projected a	area fraction o	f atoms on	1 8	a plane		
	(D)	None of th	ne above					<
37.	Con	pressibility	of a liquid is	expressed	b	y its:		_
	(A)	Density		(B))	Pressure		
	(C)	Volume		(D))	Bulk modulus	s of elastici	ty
38.	Dur	ing sintering	ng of a powder	r metal co	m	pact, the follo	wing proces	ss takes
	plac	e:						
	(A)	some of the	he pores grow					
	(B)	powder pa	articles do not	melt but a	a	bond is forme	d between	them
	(C)	all the po	ores reduce in	size and b	01	nd occurs due	to melting	
-	(D)	powder p	articles fuse a	nd join tog	et	her		
39.	Pov	ver transmi	itted by a circu	ular shaft	is	given by:		
	(A)	πDN/60 j	oules	(B	3)	2πNT/60 was	tts	
	(C)	πDNT/60	watts	. Œ))	2πΝΤ/1000 γ	watts	
40.	Wa	tt mechani	sm is a	bar mech	na	nism.		
	(A)	3		(E	3)	4		
	(C)	5		(I))	8		
LEG		ECH.) T.E.	2016—D	9				P.T.O
								-

41.	The	hardness of various structures in	decre	easing order during heat treatment
	of s	teel is:		
	(A)	fine pearlite, coarse pearlite, ma	arten	site, spherodite
	(B)	martensite, fine pearlite, coarse	pear	rlite, spherodite
	(C)	fine pearlite, martensite, sphere	dite,	coarse pearlite
	(D)	coarse pearlite, fine pearlite, m	arten	site, spherodite
42.	The	most appropriate governing equ	ation	of ideal fluid flow are:
	(A)	Euler's equation	(B)	Navier Stokes' equation
	(C)	Reynolds' equation	(D)	Hage Poisullie equation
43.	In s	sand casting lower part of the m	ouldi	ing flask is called :
	(A)	cope	(B)	riser
	(C)	drag	(D)	none of these
44.	The	emissivity and absorptivity of a re	eal su	urface are equal for radiations with
	ider	ntical temperature and wavelengt	h. Tl	nis islaw.
	(A)	Planck's	(B)	Wein's
	(C)	Stefan-Boltzman's	(D)	Kirchhoff's
45.	Tim	ne dependent yield is known as :		
	(A)	Creep	(B)	Fracture
	(C)	Buckling	(D)	Fatigue
LEC'	Γ(MI	ECH.) T.E. 2016—D 10		

46.	Spar	nners are manufactured	by:		
	(A)	dry casting		(B)	forging
	(C)	sheet rolling		(D)	cup blanking
47.	Mec	hanism having zero d.o.f.	. is know	vn a	s:
	(A)	Machine		(B)	Structure
	(C)	Kinematic chain		(D)	Link
48.	The	value of side rake angle	e of the	turn	ing tool having tool signature:
	0°,	10°, 8°, 6°, 20°, 60°, 0 (m	nm) will	be:	
	(A)	60°		(B)	20°
	(C)	10°		(D)	8°
49.	Sur	face tension is expressed	as:		
	(A)	Force per unit area		(B)	Force per unit volume
	(C)	Force per unit length	111	(D)	Force only
50.	In a	CIM industry	is also ι	ised	as transportation means for work
	part	ts and tools.			
	(A)	AGV	100	(B)	NC machine tool
	(C)	RCC device		(D)	None of these
LEC	Г (МЕ	ECH.) T.E. 2016—D	11		P.T.O

51.	A truss having 5 joints and 7	members is termed as truss.
	(A) perfect	(B) imperfect or deficient
	(C) redundant	(D) none of these
52.	Kinematic viscosity is equal to	o :
	(A) density/dynamic viscosity	(B) viscosity/shear stress
	(C) viscosity/density	(D) viscosity/velocity gradient
53.	Consider a refrigerator and a	heat pump working on the reversed Carnot
	cycle between the same tempe	erature limits. Then:
	(A) COP of Heat Pump = C	OP of Refrigerator
	(B) COP of Heat Pump = C	OP of Refrigerator - 1
	(C) COP of Heat Pump = C	OP of Refrigerator + 1
	(D) COP of Heat Pump = 1/	(COP of Refrigerator)
54.	These polymers cannot be rec	eycled:
	(A) Elastomers	(B) Thermoplasts
	(C) Thermosets	(D) All polymers
LEC	T (MECH.) T.E. 2016—D	12

55.	Turk	oine is a machine which c	onverts :		
	(A)	Mechanical energy to hyd	draulic ene	rgy	
	(B)	Hydraulic energy to mech	nanical ene	ergy	
	(C)	Electrical energy to mech	anical ene	rgy	gs - 100
2	(D)	Mechanical energy to ele-	ctrical ener	rgy	
56.	The	'flyer plate' is used	weldin	g.	
	(A)	Ultrasonic	(B)	Explosive	
	(C)	Electron beam	(D)	Laser beam	
57.	Whe	n a body is subjected to st	ress in all	the directions, the l	oody is said to
	be u	nder stress.			
	(A)	compressive	(B)	tensile	
	(C)	shear	(D)	volumetric	
58.	In c	utting tools, crater wear d	evelops at	1	
	(A)	the principal flank	(B)	the tool nose	
	(C)	the auxiliary flank	(D)	the rake surface	
LECT	(ME	CH.) T.E. 2016—D	13	4	P.T.O.

59.	Dur	ring an isothermal expansion process of a gas:	Q.
	(A)	pressure remains constant	
	(B)	temperature remains constant	
	(C)	both pressure and temperature remain constant	
	(D)	none of the above	
60.	Obl	ique cutting system is also known as :	
	(A)	One-dimensional cutting system	
	(B)	Two-dimensional cutting system	
	(C)	Three-dimensional cutting system	
	(D)	None of the above	
61.	Hoo	oke's law is applicable :	
	(A)	Plastic range, strain is proportional to stress	
	(B)	Elastic range, strain is proportional to stress	
	(C)	In both elastic and plastic range, strain is proportional to stress	
	(D)	None of the above	
62.	In a	an open thermodynamic system :	
	(A)	mass transfer takes place	
	(B)	energy transfer takes place	
	(C)	both mass and energy transfer takes place	
	(D)	no change takes place	
LEC'	T (MI	ECH.) T.E. 2016—D 14	

63.	For	supporting the pressur	e perpendicular	to the axis of the	e shaft, the be	aring
	pref	erred is :				
	(A)	Journal bearing	(B)	Pivot bearing		
		117				
	(C)	Thrust bearing	(D)	Footstep beari	ng	
64.	The	convexity provided or	n the rim of th	e pulley is know	wn as :	
	(A)	Grooving	(B)	Caulking		
	(C)	Forming	(D)	Crowning		
65.	The	change in entropy is	zero during	process.		
	(A)	Polytropic	(B)	Adiabatic		
	(C)	Constant pressure	(D)	Hyperbolic		
66.	In a	cantilever beam the be	nding moment w	rith respect to fix	ed end is max	imum
	at:			5		
· ·	(A)	the center	(B)	the free end		
	(C)	the fixed end	(D)	any point on	the beam	
LECT	r (ME	CCH.) T.E. 2016—D	15		P	.T.O.

	(A)	1 Ns/m ²	(B)	10 Ns/m^2
	(C)	0.1 Ns/m ²	(D)	0.01 Ns/m^2
68.	Mul	tistage compression leads to:		
	(A)	decreased vol. efficiency for a g	given	pressure ratio
	(B)	increased vol. efficiency for a g	given	pressure ratio
	(C)	more cost		
	(D)	more noise	9	
69.	Orsa	at apparatus is used for analyzir	ng	
	(A)	oxygen	(B)	air
	(C)	carbon dioxide	(D)	flue gases
70.	Ann	ealing is used to make the stee	l con	iponents:
	(A)	hard	(B)	soft
	(C)	brittle	(D)	none of these
TEC	T /ME	CU \TF 2016 D 16		

67.

One poise is equal to:

71.	Prof	files used for spur gears are :		
	(A)	Epicycloid profiles	(B)	Hypocycloid profiles
	(C)	Thread profiles	(D)	Involute profiles
72.	Dur	ing fusion, the entropy of the sy	stem	
	(A)	decreases	(B)	increases
	(C)	always remains constant	(D)	none of these
73.	The	deflection of a cantilever beam of le	ength	L, modulus of elasticity E, moment
	of ir	nertia I subjected to a point load	P is	PL ³ /3 EI. The strain energy due
	to b	ending is :		
	(A)	5PL ³ /48EI	(B)	$P^2L/3EI$
	(C)	$P^2L^3/6EI$	(D)	$P^2L^3/48EI$
74.	If fl	ow conditions satisfy Laplace eq	luatio	on', then:
	(A)	flow is rotational		
	(B)	flow does not satisfy continuity	equa	ation
	(C)	flow is irrotational and satisfy	conti	nuity equation
	(D)	flow is irrotational and does no	ot sat	cisfy continuity equation
LECT	(ME	CH.) T.E. 2016—D 17		P.T.O.

75.		welding is a solid state	joining	g process.	
	(A)	gas	(B)	friction	
	(C)	arc	(D)	thermit	
76.	A re	efrigerant moving in a refrigera	ator fo	ollows:	
	(A)	open system			
	(B)	closed system			
	(C)	both open and closed system	exists		
	(D)	none of the above			
77.		technique is used for planni	ing the	procurement of de	ependent demand
	item	is.			
	(A)	MRP	(B)	EOQ	
	(C)	CPM	(D)	PERT	
78.	The	North West Corner rule :			
	(A)	is used to find an initial feas	ible s	olution	
	(B)	is used to find an optimal so	lution		
	(C)	is based on the concept of m	inimiz	ing opportunity c	ost
	(D)	none of the above	Cap's		ant.
LEC'	T (ME	ECH.) T.E. 2016—D	8		

-						
79.	A car moving with a uniform acceleration covers 450 m in 5 secs interval,					
	and	covers 700 m in nex	t 5 secon	ds in	nterval. The acceleration of	the
17.	car i	s:				1
	(A)	7.5 m/sec^2		(B)	10 m/sec^2	
	(C)	12.5 m/sec^2		(D)	20 m/sec^2	
80.	For	principal axes, the mo	oment of in	nertia	will be:	
	(A)	$I_{xy} = 0$	**	(B)	$I_{xy} = 1$	
	(C)	$I_{xy} = \infty$		(D)	None of these	
81.	If th	e algebraic sum of the	virtual wo	rk for	every displacement is	., the
	syste	em is in equilibrium.				
	(A)	zero		(B)	one	
	(C)	infinity		(D)	none of these	
82.	Volu	ime of 1 kg of dry ste	eam is kno	own a	ıs:	
	(A)	total volume		(B)	saturated volume	
	(C)	specific volume		(D)	none of these	
LEC'	Г (МЕ	CCH.) T.E. 2016—D	19		F	P.T.O.

83.	The second law of thermodynamic	s defin	nes:
47	(A) internal energy	(B)	heat
	(C) work	(D)	entropy
84.	Section modulus (Z) of a beam dep	pends	on :
8	(A) the geometry of the cross-sect	tion	
	(B) weight of the beam		
e U	(C) only on length of the beam		
	(D) none of the above		
85.	In a lower pair of links there is		contact.
	(A) point	(B)	line
	(C) surface	(D)	no
86.	LVDT is used for measuring:		
	(A) displacement	(B)	roughness
	(C) pressure	(D)	speed
87.	GO-NO GO gauges are used for in	spection	on of:
9	(A) variables	(B)	attributes
	(C) both variables and attributes	(D)	none of these
LECT	(MECH.) T.E. 2016—D 20) -	

88.	is a cylindrical rod threaded at both the ends and left plain in the						
	mid	dle.	out				
	(A)	Shaft	(B)	Spindle			
	(C)	Stud	(D)	Bolt			
89.	If a	circular chamber is int	roduced between	n the casing and the impeller, t	hen		
	casi	ng is known as :					
	(A)	guide blades casing	(B)	vortex casing			
P.	(C)	volute casing	(D)	none of these			
90.	The	layout with a higher	material handl	ing effort is a layout			
	(A)	process	(B)	product			
9	(C)	equipment	(D)	material			
91.		represents the a	area under accel	eration-time graph.			
	(A)	Acceleration	(B)	Displacement			
	(C)	Motion	(D)	Change in velocity			
92.	McI	Leod gauges are used	for measuring				
	(A)	RPM of shaft	(B)	Surface roughness			
	(C)	Vacuum	(D)	Velocity	10		
LECT	(ME	ECH.) T.E. 2016—D	21	P.	Г.О.		

	5				
93.	When the shafts a	are slightly misal	igned the	n most suitable coup	oling to connect
	them is:				
8	(A) Rigid coupli	ing	(B)	Flexible coupling	
	(C) Oldham cou	ıpling	(D)	None of these	
94.	Which among th	e following is th	ne boiler	mounting ?	
	(A) Blow off coo	ek .	(B)	Feed pump	
	(C) Economiser		(D)	Superheater	
95.	The most commo	only used criteria	a for mea	asuring forecast err	or is :
	(A) mean absolu	ute deviation			
	(B) mean absolu	ute deviation pe	rcentage	error	
	(C) mean stand	ard deviation er	ror		
	(D) mean squar	e error			

96. Gibbs phase rule for general system is:

(A)
$$P + F = C - 3$$

(B)
$$P + F = C + 3$$

(C)
$$P + F = C - 2$$

$$(D) P + F = C + 2$$

LECT (MECH.) T.E. 2016—D

97.	Prin	cipal plane and plane contain	ing max	simum shear stress are separated
	by:			74
	(A)	0°	(B)	30°-
	(C)	45°	(D)	60°
98.		sensor is an example for p	oroximit	y sensor used in Robots.
	(A)	Micro switch	(B)	Ultrasonic
	(C)	Touch and tactile	(D)	None of these
99.	On	principal plane the shear stres	s is	**************************************
	(A)	zero	6	
	(B)	unity		
15 W 20 20	(C) (D)	double the value of principal	38	
100.	Lan	ni's theorem can be applied fo	r :	
	(A)	3 concurrent forces	(B)	3 non-concurrent forces
	(C)	3 parallel forces	(D)	3 collinear forces
· LEC	Γ(ME	CCH.) T.E. 2016—D	23	P.T.O.