HPAS (M)-2014

CHEMISTRY

Paper I

Time: 3 Hours Maximum Marks: 150

Note:— Question No. 1 is compulsory and attempt any four questions out of the remaining six questions,

i.e. attempt five questions in all. All parts of a question must be attempted in continuation at one place.

1. (a) What are the shapes of the Nitrate ion, NO_3^- , and Carbonate ion, CO_3^{2-} ?

- (b) Why are transition metals hard and brittle?
- (c) Cobalt (II) is stable in aqueous solutions but in the presence of complexing reagents it is easily oxidised. Explain.
- (d) Explain the phenomenon of Fluorescence.
- (e) Chemisorption is monolayer whereas physical adsorption is usually multilayer. Explain.
- (f) Reaction of third and higher order are not very common. What are the reasons for this ?
- (g) Derive the relationship $TV^{\gamma-1} = constant$ for a reversible adiabatic expansion.

- (h) What is the role of salt bridge in electrochemical cells?
- (i) Which is more conducting Li or Cs, and why?
- (j) "While the viscosity of a gas increases with increase in temperature, that of a liquid decreases with increase in temperature." How do you account for this?
- 2. (a) The pH of a 0.10 M hydrocyanic acid solution is 5.2. What is the value of ${\rm K}_a$ for hydrocyanic acid?

- (b) Compare the elements Na, B, Al and C with regard to the following properties:
 - (i) Which has the largest atomic radius?
 - (ii) Which has the most negative electron affinity?
 - (iii) Place these elements in order of increasing ionization energy.
- (c) Determine the standard free energy change, ΔG°, for the formation of 1.00 mol of NH₃(g) from nitrogen and hydrogen, and use this value to calculate the equilibrium constant for this reaction at 25°C.

- (d) Give the electron configuration for each of the following complexes. How many unpaired electrons are present in each complex? Are the complexes paramagnetic or diamagnetic?
 - (i) low-spin $\left[\operatorname{Co}\left(\operatorname{NH}_{3}\right)_{6}\right]^{3+}$
 - (ii) high-spin $\left[\operatorname{CoF}_{6}\right]^{3-}$.
 - (e) What is a wave? Explain the following terms associated with waves:

Wavelength, frequency and amplitude. 5×6=30

3. (a) In general, ionization energy increases from left to right across a given period. Aluminium,

however, has a lower ionization energy than magnesium. Explain.

Arrange the following in order of increasing first ionization energy:

F, K, P, Ca and Ne.

Aluminium crystal: the rays are reflected at an angle of 19.3°. Assuming that n = 1, calculate the spacing between the planes of Aluminium atoms (in pm) that is responsible for this reflection angle. The conversion factor is obtained from 1 nm = 1000 pm.

- (c) Describe the hybridization of phosphorus in PF₅.
- (d) Distinguish between an unsaturated solution,
 a saturated solution and a supersaturated
 solution. From which type of solution out of
 these mentioned above does crystalization or
 precipitation occur? How does a crystal differ
 from a precipitate?
- (e) What are the units for the rate constants of zero order, first order, and second order reactions?

 What is meant by the order of a reaction?

5×6=30

P.T.O.

- 4. (a) What are ion-pairs? What effect does ion-pair formation have on the colligative properties of a solution?
 - (b) Distinguish between homogeneous catalysis and heterogeneous catalysis. A certain reaction is known to proceed slowly at room temperature. Is it possible to make the reaction proceed at a faster rate without changing the temperature?
 - (c) A factory that specializes in the refinement of transition metals such as titanium was on fire.

 The firefighters were advised not to douse the fire with water. Why?

- (d) Predict the relative strengths of the oxoacids in each of the following groups:
 - (i) HClO, HBrO and HIO
 - (ii) HNO₃ and HNO₂.
- (e) At the start of a reaction, there are 0.249 mol N_2 , 3.21×10^{-2} mol H_2 and 6.42×10^{-4} mol N_3 in a 3.50 L reaction vessel at 375°C. If the equilibrium constant (K_C) for the reaction:

$$N_2(g) + 3H_2(g) \rightleftharpoons NH_3(g)$$

is 1.2 at this temperature, decide whether the system is at equilibrium. If it is not, predict which way the net reaction will proceed. 5×6=30

P.T.O.

- 5. (a) Calculate the solubility of silver chloride $(\text{in g/L}) \ \text{in a } 6.5 \ \times \ 10^{-3} \ \text{M silver nitrate}$ solution.
 - (b) How does the entropy a system change for each of the following processes ?
 - (i) A solid melts
 - (ii) A liquid freezes
 - (iii) A liquid boils
 - (iv) A vapour condenses to a liquid
 - (v) A solid sublimes
 - (vi) Urea dissolves in H2O.

(c) For the following cell:

 $Pb \mid PbCl_2(s) \mid PbCl_2(soln) \mid AgCl(s) \mid Ag$

coefficient of the emf is $-1.86 \times 10^{-4} \text{ V K}^{-1}$.

the potential at 298 K is 0.490 V and temperature

Calculate the ΔG , ΔH and ΔS for the reaction at 298 K.

- (d) Define quantum yield. How is quantum yield determined experimentally?
- (e) Steel hardware, including, nuts and bolts, is often coated with a thin plating of Cadmium.

Explain the function of the Cadmium layer. What is the difference between a Galvanic cell and electrolytic cell?

Or

Discuss Jahn-Teller effect.

 $5 \times 6 = 30$

- 6. (a) List two chemical and two physical properties that distinguish a metal from a non-metal. State whether each of the following elements are metals, metalloids, or non-metals:
 - (i) Cs
 - (ii) Ge

- (iii) I
- (iv) Kr
- (υ) W
- (vi) Ga
- (vii) Te
- (viii) Bi.
- (b) Draw structures of all the geometric and optical isomers of each of the following cobalt complexes:
 - (i) $\left[\operatorname{Co}\left(\operatorname{NH}_{3}\right)_{4}\operatorname{Cl}_{2}\right]^{+}$
 - (ii) $\left[\operatorname{Co}(\operatorname{en})_3\right]^{3+}$.

- (c) Write the IUPAC names for the following ions and compounds:
 - (i) $\left[\text{Cis-Co(en)}_2 \text{Cl}_2 \right]^+$
 - (ii) $\left[\text{Pt} \left(\text{NH}_3 \right)_5 \text{Cl} \right] \text{Cl}_3$
 - (iii) $\left[\text{Co} \left(\text{NH}_3 \right)_5 \text{Cl} \right] \text{Cl}_2$.
- (d) Compounds containing the Sc³⁺ ions are colourless, whereas those containing the Ti³⁺ ions are coloured. Explain.
- (e) Why is atomic emission more sensitive to flame instability than atomic absorption?

 What is the function of flame in flame photometry?

 5×6=30

7. (a) Set up the Schrödinger equation for a particle in a one-dimentional box and hence derive the expression:

$$\mathbf{E} = \frac{n^2 \hbar^2}{8m \mathbf{L}^2}.$$

- (b) What are the permitted values of the quantum number n? Explain why a zero value of n is not permitted?
- (c) What is the importance of Lambert-Beer's law in quantitative analysis? What are its limitations?

- (d) Actinides have a greater tendency to form complexes than Lanthanides. Explain.
- (e) Lanthanoid ions typically display weak but sharp adsorption spectra. Explain. 5×6=30