DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

TEST BOOKLET SERIES

TEST BOOKLET A.P. (CC) BOTANY-2016

Time	Allowed: 2 Hours	[Maximum Marks: 100
	All questions carry equal marks.	
	INSTRUCTIONS	5 1
1.	Immediately after the commencement of the examination, you sho does not have any unprinted or torn or missing pages or items by a complete test booklet.	
2.	Encode clearly the test booklet series A, B, C or D as appropriate place in the answer sheet.	the case may be in the
3.	Write your Roll Number only in the box provided alongside. Do not write anything else on the Test Booklet.	
4.	This Test Booklet contains 100 items (questions). Each item (answers). Choose only one response for each item which you	
5.	After the candidate has read each item in the Test Booklet and responses is correct or the best, he has to mark the circle co	
	selected response by blackening it completely with Black or Blue example, response "C" is so marked:	e ball pen. In the following
	(A) (B) (D)	and the first of

- 6. Do the encoding carefully as given in the illustrations. While encoding your particulars or marking the answers on answer sheet, you should blacken the circle corresponding to the choice in full and no part of the circle should be left unfilled. After the response has been marked in the ANSWER SHEET, erasing/fluid is allowed.
- 7. You have to mark all your responses ONLY on the ANSWER SHEET separately given according to 'INSTRUCTIONS FOR CANDIDATES' already supplied to you. Responses marked on the Test Booklet or in any paper other than the answer sheet shall not be examined.
- All items carry equal marks. Attempt all items. Your total marks will depend only on the number of correct responses marked by you in the Answer Sheet. There will be no negative marking.
- Before you proceed to mark responses in the Answer Sheet fill in the particulars in the front portion of the Answer Sheet as per the instructions sent to you.
- 10. If a candidate give more than one answer, it will be treated as a wrong answer even if one of the given answers happens to be correct.
- 11. After you have completed the test, hand over the Answer Sheet only, to the Invigilator.

A.P. (CC) BOTANY 2016

Time Allowed: 2 Hours

[Maximum Marks: 100

- 1. In an ecosystem, what defines its composition of biological community, availability of water and nutrients, as well as the conditions such as light and temperature?
 - (A) Function

(B) Biotic potential

(C) Physiognomy

- (D) Structure
- 2. The atmospheric growth rate of CO2 in the decade 2005-2014 was :
 - (A) 0.73 ppm per year

(B) 1.44 ppm per year

(C) 1.87 ppm per year

- (D) 2.11 ppm per year
- 3. A log of wood in T.S. showed clear annual rings, uniseriate and multiseriate rays, tracheids and resin canals, but no vessels or fibres. It can be the wood of:
 - (A) Gnetum

(B) Quercus

(C) Pinus

- (D) Eucalyptus
- 4. Match the bryophyte and the mechanism of its spore dispersal :

Bryophyte

Mechanism

(p) Funaria

(i) Explosive mechanism

(q) Riccia

(ii) Hygroscopic elaters

(r) Marchantia

(iii) Peristome teeth

(s) Sphagnum

(iv) Decay or Shrivelling of calyptra and thallus tissue

Use the codes given below:

- (A) (p)—(ii), (q)—(iii), (r)—(i), (s)—(iv)
- (B) (p)—(iii), (q)—(iv), (r)—(ii), (s)—(i)
- (C) (p)—(ii), (q)—(i), (r)—(iv), (s)—(iii)
- (D) (p)—(iii), (q)—(ii), (r)—(i), (s)—(iv)

5.	Whi	ch of the following	groups is rep	orted	to show pollination h	by insects as
	well	as wind?				
					UT.	
	(A)	Cycadales		(B)	Coniferales	
10						
	(C)	Ephedrales		(D)	Poales	
6.	Long	g shoots with pycno	xylic wood an	d dwa	arf shoots with manoxy	ylic wood are
	coon	in:				
ÿ.	Seen					
					3	
×	(A)	Cycas revoluta	1 92	(B)	Pinus roxburghii	
	(C)	Ginkgo biloba		(D)	Taxodium mucronat	um
7.	Acco	ording to most rece	nt estimates	the to	otal number of known	angiosperm
	spec	ies is about :				
	(A)	1.5 lakhs		(B)	3 lakhs	
	ě.	d 0 0		3		
	(C)	4.5 lakhs	2.	(D)	6 lakhs	91
	8.8			2 27	**	
0	C-11					
8.	Cell	wall of diatoms is	s rich in :			
	(A)	Calcium	8 6	(B)	Lignin	
	(C)	Silica		(D)	Alginic acid	
A.P.	(CC) I	BOTANY-2016—A	3			P.T.O.

Amborella trichopoda is now widely considered as: 9. Oldest known fossil of an angiosperm (A) Most primitive living angiosperm (B) Most primitive living vascular plant (C) Oldest known fossil of a seed plant (D) Which one of the following lists all phytoplanktons? 10. (A) Hydrilla, Azolla, Spirodella, Lemna, Wolffia Lecane, Asplanca, Euglena, Cyclops, Brachionus Pythium, Alternaria, Cladosporium, Trichoderma, Saprolegnia Volvox, Microcystis, Spirulina, Zygonema, Oedogonium Of the three types of ecological pyramids, the pyramid of energy is considered 11. to give the best assessment of the nature of ecosystem because : Energy is industructible (A) Pyramid of energy is always upright It represents the rates of passage of food mass through the food chain (C) Number and biomass are more difficult to measure than the flow of energy

12.	The	sequence of steps in the process of s	succession is :
	(A)	$Migration \to Ecesis \to Aggregation$	→ Reaction → Stabilization
	(B)	Reaction \rightarrow Aggregation \rightarrow Ecesis -	→ Migration → Stabilization
	(C)	Ecesis \rightarrow Migration \rightarrow Aggregation	→ Stabilization → Reaction
	(D)	Aggregation → Stabilization → Mig	$ration \rightarrow Aggregation \rightarrow Ececis$
13.		nique symbiotic association between a p	
	(A)	Jute (B)	Rice
	(C)	Soybean (D)	Cotton
14.	Mat	ch the life cycle patterns of some alg	ae and their suitable examples:
		Life Cycle	Algae
	(p)	Haplobiontic with zygotic (i) meiosis	Fucus
	(q)	Diplobiontic, isomorphic (ii)	Laminaria
	(r)	Diplobiontic, isomorphic (iii)	Oedogonium
	(s)	Haplobiontic, with gametic (iv)	Dictyota
		meiosis	has the state of t
	Use	the code given below:	
	(A)	(p)— (ii) , (q) — (i) , (r) — (iii) , (s) — (iv)	
	(B)	$(p)\!\!-\!\!(i),(q)\!\!-\!\!(iii),(r)\!\!-\!\!(ii),(s)\!\!-\!\!(iv)$	
	(C)	(p)— (iv) , (q) — (iii) , (r) — (i) , (s) — (ii)	
	(D)	(p)— $(iii), (q)$ — $(iv), (r)$ — $(ii), (s)$ — (i)	
A.P.	(CC)	BOTANY-2016—A 5	P.T.O.

			8 2		* * * * * * * * * * * * * * * * * * * *	
	(A)	Spirilla	(B)	Cocci	
			10			
	(C)	Bacilli	(D)	Vibrios	
			W		Kali d	
16.	Sim	ilar traits evolved due si	milar select	io	n pressure acting on similar g	gene
10.	Omn	nai traits evolved due si				8 St. Activ 8
	pool	s represent :	2			
	poor	s represent.				
æ	(A)	Convergent evolution	(B	3)	Co-evolution	
		,				
	(C)	Parallel evolution	(D))	Divergent evolution	
	850					
	·		. , , ,			boin
17.	The	flowering plants are bell	eved to nav	ve	appeared in the cretaceous pe	riou
	whi	ch occurred around:			a" a.g	
			[pi] (9)			
1 (4)	(A)	70 million years ago	(E	3)	135 million years ago	
	(11)	To minion yours ago	20			
			3.5		1 (1)	
	(C)	300 million years ago	, (I))	380 million years ago	
			10 1		W 1 1 1 1	
18.	Λ -	sions of nucleic acid emp	loved to fin	d	a gene by forming a hybrid	with
10.	AP	nece of fracters acid emp	loyed to in		a gone by remaining a style	
	., .					
	1t 1	s called:		-		
		37				
	(A)	Probe	(H	3)	Primer	
			91			
	3.5		1 11 19			
	(C)	Marker	(1)	Transcript	
A.P.	(CC)	BOTANY-2016—A	6			

Rod-shaped bacteria are called:

19.	Whe	ere the specific epithet exact	ly repeats	the generic na	me, the plan	nt name			
	is considered illegitimate because it is a/an:								
	(A)	Homonym	(B)	Autonym					
	(C)	Tautonym	(D)	Typonym	= x				
20.	Whe	en red-flowered snapdragons	are crossec	d with white-flo	wered, the o	ffspring			
	has	pink flowers. This type of	genotypic	expression is	because of :				
	(A)	Codominance	(B)	Incomplete d	ominance				
	(C)	Multi-allelic inheritance	(D)	Dominant-rec	essive patte	rn			
21.	Nun	nber of cells in the Quisce	nt Centre	of RAM in A	rabidopsis t	haliana			
	is:		ē.			1.1			
	(A)	4	(B)	8					
	(C)	16	(D)	32					
22.	Whi	ich cells in an angiosperm	are most	comparable t	o the stem	cells of			
	mar	mmals?	13	*8					
	(A)	Central mother cells of st	em apex			*			
170	(B)	Vascular cambium				8			
	(C)	Initials around the quisce	ent centre		ar a s				
	(D)	Phellogen							
A.P.	(CC)	BOTANY-2016—A	7	*		P.T.O.			

23.	A specimen or other element used by the author or designated by him as
20.	
	the nomenclatural type is:
	(A) Isotype (B) Paratype
	(C) Lectotype (D) Holotype
24.	A dye extracted from which of the following is used to impart a light-yellow
	tinge to a popular brand of butter in India?
	(A) Haematoxylon campechianum (B) Terminalia chebula
	(C) Bixa orellana (D) Carthamus tinctorius
25.	One annual ring of secondary xylem has:
	(A) Sapwood and heartwood
IV.	(B) Springwood and autumn wood
	(C) Softwood and hard wood
	(D) Tension wood and compression wood
26.	Which of the following shows secondary growth by successive cambia?
	(A) Boerhaavia diffusa (B) Aristolochia triangularis
	(C) Thunbergia coceinea (D) Serjania corrugata
A.P. (CC) BOTANY-2016—A 8

27.	Whi	ch of the following methods of genetic transformation has proved most
	succ	essful with crop plants ?
	(A)	Electroporation
	(B)	Use of Agrobacterium tumefaciens
	(C)	Microprojectile bombardment
	(D)	Microinjecting DNA
28.	Wha	at is the purpose of use of selectable marker or reporter genes ?
	(A)	Receive a signal that gene transfer has been accomplished as desired
	(B)	Control the expression of the gene of the desired trait in the targeted
		organ or tissue
	(C)	Selection of transformed cells from amidst non-transformed cells
	(D)	Determine the precise site on a host chromosome where gene introgression
		has occurred
29.	Whi	ch among the following yields a dye as well as edible oil, and is also used
	as a	substitute or adulterant of saffron ?
	(A)	Lawsonia inermis (B) Tegetes patula
	(C)	Isatis tinctoria (D) Carthamus tinctorius
A.P.	(CC) I	BOTANY-2016—A 9 P.T.O.

30.	Whic	ch part of Podophyllum hexandrum is used for extraction of podophyllotoxin
	used	against tumours ?
	(A)	Root (B) Stem
	(C)	Flowers (D) Seeds
31.	Reca	lcitrant seeds are those which:
	(A)	Remain dormant for long periods
≅	(B)	Show a high degree of sterity
	(C)	Require cold treatment for germination
	(D)	Get killed on drying or freezing
32.	A de	emulcent is a drug that :
	(A)	Calms the nerves and induces sleep
	(B)	Enhances appetite and digestion
	(C)	Soothes skin and mucous membrane
	(D)	Increases the discharge of urine
33.	Gyn	nospermous wood is designated softwood because :
	(A)	Resin ducts make it weak
	(B)	Fibers are lacking
	(C)	Vessels are absent
	(D)	Excess of axial parenchyma is present
A.P.	(CC) I	BOTANY-2016—A 10

34.	Reserpine	finds	maximum	use	in	treatment	of	:

(A) Kidney disfunction

(B) Blood cancer

(C) Hepatitis A

(D) Mental disorders

35. Apple is pollinated by:

(A) Bees

(B) Butterflies

(C) Wasps

(D) Moths

36. Match the fruit and its morphological type :

Fruits Type

(p) Papaya

(i) Pepo

(q) Fig

(ii) Drupe

(r) Coconut

(iii) Berry

(s) Pumpkin

(iv) Syconium

Use the code given below:

(A)
$$(p)$$
— (ii) , (q) — (i) , (r) — (iv) , (s) — (iii)

(B)
$$(p)$$
— (iii) , (q) — (iv) , (r) — (ii) , (s) — (i)

(C)
$$(p)$$
— (iv) , (q) — (ii) , (r) — (i) , (s) — (iii)

(D)
$$(p)$$
— (ii) , (q) — (iv) , (r) — (i) , (s) — (iii)

	(A)	Crushing to ensur	e complete m	ixing	of enzymes
	(B)	Drying fresh leave	es to retain g	reen	colour
	(C)	Tearing and warn	ning of leaves	for	better fermentation
	(D)	Heating freshly pi	cked leaves t	o ina	activate enzymes
38.	Obta	aining rare hybrids	is one of the	imp	ortant applications of culture of :
	(A)	Ovule		(B)	Embryo
8	(C)	Endosperm		(D)	Pollen
39.	Ame	ong linseed, castor	, soybean an	d m	ustard how many are drying or
	sem	idrying oils ?			
		i a			
	(A)	One		(B)	Two
			-		-1002 1000 m.L
	(C)	Three		(D)	All four
40.	Wh	ich part of the sten	n bears the fi	bers	of jute ?
	(A)	a .		(D)	Dhloom
	(A)	Cortex	1 . 1 . 1 mar 2	(B)	Phloem
	(C)	Xylem		(D)	Pith
A.P.	(CC)	BOTANY-2016—A	12		

Processing for green tea requires:

	-			
	(A)	Nucellus	(B)	Integument
	(C)	Endosperm	(D)	Antipodal cells
42.	Mat	tch the species and its method o	f see	d dispersal:
	(p)	Impatiens parviflora	(i)	Zoochory
	(q)	Oroxylum indicum	(ii)	Autochory
	(r)	Viscum album	(iii)	Myrmechochory
	(s)	Anemone nemerosa	(iv)	Anemochory
	Use	the codes given below:		
1	(A)	(p)— (i) , (q) — (iii) , (r) — (ii) , (s) — (iii)	iv)	
	(B)	(p)— (iii) , (q) — (ii) , (r) — (i) , (s) — (i)	iv)	
	(C)	(p)— (iv) , (q) — (iii) , (r) — (ii) , (s) —	-(i)	
	(D)	(p)— (ii) , (q) — (iv) , (r) — (i) , (s) — (i)	iii)	8 9 1 7 1
43.	Wh	ich of the following is the most	wide	spread and effective adaptation to
	pre	vent self-pollination ?		
	(A)	Unisexuality	(B)	Dichogamy
	(C)	Self-incompatibility	(D)	Herkogamy
A.P	(CC)	BOTANY-2016—A 13		P.T.O

In citrus and mango adventive embryos arise from :

44.	In cereals, the aleurone grain contains:		7.1
	(A) Carbohydrates only		
	(B) Carbohydrates and lipids only		
	(C) Lipids and proteins only		
	(D) Carbohydrates, lipids and proteins	¥.,	al e
45 .	In the cap block region of the growing pollen tube, which	of the fo	llowing
	shows maximum abundance ?		
	(A) Mitochondria (B) Golgi apparatus	3	
	(C) Golgi vesicles (D) Starch grains	=_04	
46.	To generate somaclonal variation one has to use:		
	(A) Chemical mutagens (B) R-DNA technology	ogy	
	(C) Tissue culture (D) Marker-assisted	breeding	6
47.	One of the functions of tyloses is to:	91 24	e B
	(A) Defend against pathogens		
	(B) Increase tensile strength of wood		
	(C) Slow down the process of heartwood formation		V
2	(D) Ensure continued conduction of water	30	
A.P.	(CC) BOTANY-2016—A 14		

- 48. Biotrophs are organisms that :
 - (A) Produce harmful chemicals and toxins in organisms that they parasitize
 - (B) Cause no significant harm to the host while deriving nutrients from it
 - (C) Take shelter on an organism but do not derive nutrients, nor produce any harmful compounds that can harm the host
 - (D) Live independently and manufacture their own food
- 49. Which one of the following statements about DNA is wrong?
 - (A) Diameter of DNA is constant
 - (B) Amount of DNA is constant per haploid set of chromosomes in cells of a species
 - (C) There are three hydrogen bonds between adenine and thymine, and two hydrogen bonds between guanine and cytosine
 - (D) DNA invariably contains equivalent amounts of purines and pyrimidines
- 50. Raffinose on hydrolysis yields :
 - (A) Sucrose and maltose
 - (B) Glucose and fructose
 - (C) Glucose + glucose and fructose
 - (D) Glucose, fructose and galactose

	(A)	Leptosphaeria sacchari	(B)	Podosphaera leucotr	icha
	(C)	Erysiphe cruciferatum	(D)	Venturia inaequalis	
52.	Sym	ptoms of fire blight of app	ole and pea	ar are seen on :	
	(A)	Leaves and buds only		Original Control	
	(B)	Twigs and bark of matur	e trees	sproteins	*
	(C)	Fruit only		e in mount 30, c	
	(D)	All parts of the tree		Sill as Ass	1000
53.	Bore	deaux mixture is prepared	by reactio	n of copper sulphate	with:
	(A)	Lime and sulphur	(B)	Dithiocarbamic acid	L
×2	(C)	Calcium hydroxide	(D)	Methyl bromide	
54 .	In	which of the following, hur	nan beings	have minimal right	s?
*	(A)	Biosphere Reserves	1.3	Le 1 Healt in	
	(B)	Wildlife Sancturies		realized 2	
	(C)	National Parks	d 40		24.1
	(D)	Wetlands under Ramsar	Convention	n	94
A.P.	(CC)	BOTANY-2016—A	16		

Apple scab is caused by:

55.	A frameshift mutation results from :
	(A) Alteration in sequence of bases
	(B) Change in normal base pairing pattern
	(C) Conversion of one base into another
	(D) Addition or deletion of a base pair in the nucleotide sequence
56.	APG IV gives an update on classification of angiosperms at the level
	of:
	(A) Species and genera (B) Genera and families
	(C) Families and orders (D) Orders and classes
57.	Which one of the following is common in India and is not a rooted aquatic
	fern?
	(A) Salvinia (B) Pilularia
	(C) Marsilea (D) Regnellidium
58.	Where do you expect the presence of passage cells ?
	(A) Mesophyll of pine needles
	(B) Endodermal cells of roots
	(C) Tip of nucellus in angiosperm ovules
80	(D) Archegonia of bryophytes and pteridophytes
A.P.	CC) BOTANY-2016—A 17 P.T.O.

59.	Whe	re the solvent moves through fi	ixed	and charged particles under the
	influ	ence of an electrical potential gr	radie	nt, it is called:
	(A)	Electrophoresis	(B)	Electro-osmosis
	(C)	Endosmosis	(D)	Reverse osmosis
60.	Hete	erostyly is an adaptation for :		
50	(A)	Extending the duration of flow	ering	
**	(B)	Capturing larger number of po	llen	grains
	(C)	Preventing self-pollination		
	(D)	Utilizing maximum diversity of	poll	inators
61.	Whi	ch of the following groups of Track	naeop	hyta did not contribute to the huge
	coal	deposits formed in carboniferou	s per	riod ?
	(A)	Horsetails	(B)	Lycopods
	(C)	Conifers	(D)	Dicots
62.	Whi	ich among the following are arcl	haeba	acteria ?
	(A)	Methanogens	(B)	Pseudomonads
	(C)	Chlamydias	(D)	Purple non-sulfur
A.P.	(CC)	BOTANY-2016—A 18		

	called:		
e P	(A) Macrocyst	(B)	Pseudoplasmodium
	(C) Plasmodium	(D)	Paramylum
64.	Which of the following enzymes	functi	ions with optimum efficiency
5	low pH ?		
(6)	(A) Pepsin	(B)	Lipase
	(C) Trypsin	(D)	Urease
65.	Tryphine and pollen kitt substance	ces are	synthesized by:
31	(A) RER in vegetative cell	(B)	Plastids in generative cell
e u	(C) Plastids in tapetal cells	(D)	RER in tapetal cells
66.	A mature, functional sieve elemen	nt posse	esses:
	(A) Nucleus, mitochondria, golgi	appara	itus and ribosomes
	(B) ER, mitochondria, proplastid	s and s	slime
	(C) Nucleus, plastids, ribosomes	and sli	me
	(D) Golgi apparatus, plastids, m		

		15 61		
67.	Whi	ch of the following	statements is not	true for chromosome mapping?
	(A)	It helps to determ	ine sequence and	relative distance of genes
	(B)	Percentage of cross	sing-over between	two genes indicates their relative
		distance		
	(C)	Genes located farth	er apart in a chron	nosome undergo least crossing-over
	12	compared to genes	s located nearby	
	(D)	Chromosome map	is also called gen	netic map
68.	The	part of mushroom	that is seen abov	ve the ground is called:
Š.	(A)	Ascocarp	(B)	Ascogonium
	(C)	Sporangium	(D)	Basidiocarp
69.	Nep	penthes and Drosera	capture insects to	o meet their requirements of:
	(A)	Carbohydrates	(B)	Fats
ė	(C)	Proteins	(D)	Salts
70.	Zin	c is essential for:	T	
	(A)	Nitrogen fixation		
	(B)	Biosynthesis of in	dole-3-acetic acid	
	(C)	Membrane function	on .	
	(D)	Stomatal mechan	ism	
Α.	P. (CC)	BOTANY-2016—A	20	

		1,	
		ston	nata?
ő,			
		(A)	Mineral salts brought up by transpiration stream
10		(B)	Disappearance of starch from guard cells
		(D)	Disappearance of staren nom game cons
i		(C)	Production of organic acids such as malic acid
		(D)	Uptake of K ⁺ ions in guard cells
	72.	Whi	ch of the following is not a characteristic of C4 plants?
		(A)	Photorespiration is absent
	. 15		
		(B)	First stable product of photosynthesis is a 3-carbon compound,
2	n de de la	(B)	
		(B)	First stable product of photosynthesis is a 3-carbon compound, phosphoglyceric acid
		(B)	
			phosphoglyceric acid
			phosphoglyceric acid
		(C)	phosphoglyceric acid Chloroplasts are dimorphic
	73.	(C) (D)	phosphoglyceric acid Chloroplasts are dimorphic
	73.	(C) (D)	phosphoglyceric acid Chloroplasts are dimorphic Calvin cycle occurs in the cells of bundle sheath only ef source of auxins in a plant is/are:
	73.	(C) (D)	phosphoglyceric acid Chloroplasts are dimorphic Calvin cycle occurs in the cells of bundle sheath only sef source of auxins in a plant is/are:
	73.	(C) (D) Chi	phosphoglyceric acid Chloroplasts are dimorphic Calvin cycle occurs in the cells of bundle sheath only ef source of auxins in a plant is/are: Leaves (B) Cambium

	cata	lyze the same reaction are c	alled:	
	3			
	(A)	Isoenzymes	(B)	Allosteric enzymes
	(C)	Multienzyme complexes	(D)	Isomerases
75.	In w	hich of the following types, th	e embry	o sac has 16 nuclei, with a 3-celled
	egg	apparatus and two polar nu	clei ?	
	(A)	Peperomia	(B)	Penaea
	(C)	Drusa	(D)	Fritillaria
76.	A tr	ee has large red, cup-shaped,	odourles	ss flowers, having plenty of nectar,
	stick	ty pollen and with stamens a	nd pistil	projecting beyond the perianth. It
	is li	kely to be pollinated by:	1. 1	
	is li	kely to be pollinated by: Moths	(B)	Butterflies
			(B) (D)	Butterflies Bats
77.	(C)	Moths	(D)	
77.	(C)	Moths Birds	(D)	
77.	(A) (C) Mos	Moths Birds t of the Rhodophyta live in	(D)	
77.	(A) (C) Mos (A)	Moths Birds t of the Rhodophyta live in Freshwater lakes	(D)	
77.	(A) (C) Mos (A) (B)	Moths Birds t of the Rhodophyta live in Freshwater lakes Springs and streams	(D)	

- 78. A facultative heliophyte:
 - (A) grows best in shade, but can grow well in bright sunlight
 - (B) grows best in sun, but can also grow well in shade
 - (C) grows best in alkaline soil, but can grow well in neutral and slightly acidic soil
 - (D) is a seasonal plant, but can grow like a perennial if suitable environmental conditions are provided
- 79. In mosses and ferns, the archegonia are able to receive the sperms because of:
 - (A) Chemical secretions
 - (B) Water currents
 - (C) Opposite electric charges
 - (D) Flagellated sperms getting caught in numerous thread-like emergences of archegonia
- 80. Pedogenesis is:
 - (A) Process of soil degradation due to pollution
 - (B) Changes in climax vegetation due to alterations in climate
 - (C) Loss of function of an organ due to disuse
 - (D) Process of soil development

81.	In v	which District of H.P. are Rahal	la wa	iterfalls ?
	(A)	Bilaspur	(B)	Hamirpur
	(C)	Kullu	(D)	Chamba
82.	App	roximately how much rainfall d	oes D	haramsala town of H.P. get in a
	year	.?		
	(A)	2200 mm	(B)	3400 mm
	(C)	3900 mm	(D)	4500 mm
83.	Whi	ich of the following is not usu	ally	sown in H.P. during the Kharif
	seas	son ?	ă.	
390	(A)	Cotton	(B)	Sugarcane
	(C)	Urad	(D)	Lentil (Masoor)
84.	Wha	at was the number of districts in	H.P.	after the transfer of certain areas
	of F	Punjab in November, 1966?		
	(A)	7	(B)	8
	(C)	9	(D)	10
85.	Who	o is the author of "Of Mountain	s and	l Men"?
9	(A)	K. Maitra	(B)	G.D. Khosla
	(C)	H.KMitto	(D)	K.L. Joshi
A.P. ((CC)	BOTANY-2016—A 24		

Ĭ.	j				8
86.	Rule	rs of which of the following prin	cely	states of Kangra region belon	iged
	to S	uryavanshi race ?			
	(A)	Guler	(B)	Siba	
	(C)	Jaswan	(D)	None of these	
87.	In w	which region of H.P. is Marechh	Dev	ata worshipped ?	
	(A)	Hamirpur—Sujanpur	(B)	Arki—Kunihar	i
	(C)	Kumarsain—Kotgarh	(D)	Bilaspur—Sundernagar	
88.	Whi	ch District of H.P. recorded negat	ive d	ecennial growth rate in popula	tion
	betv	veen 2001 and 2011 ?			
	(A)	Kinnaur	(B)	Shimla	
	(C)	Kullu	(D)	Lahaul-Spiti	
89.	Girl	s of which age-group are covere	d in	Kishori Shakti Yojna in H.P.	?
6	(A)	10 to 16 years	(B)	11 to 18 years	
	(C)	12 to 20 years	(D)	14 to 22 years	ä.
90.	At ·	which place in Bilaspur District	of H	I.P. a hydro engineering colle	ge is
	proj	posed to be set up?	T.		
	(A)	Bandla	(B)	Dabla	
	(C)	Marottan	(D)	Kandraur	
A.P.	(CC)	BOTANY-2016—A 25		P	T.O.

91.	Wit	h which of the following is Bezwad	a Wilson, the winner of Magsaysa
	Awa	ard associated?	
	(A)	Safai Karmachari Andolan	
	(B)	Child Rights	
	(C)	Anti-pollution movement	
	(D)	Climate change	
92.	In v	which state of India is Chilka lake	?
	(A)	J and K (B) Uttarakhand
	(C)	Odisha (D) Sikkim
93.	Whe	en was <i>Pradhan Mantri Jeevan Jyo</i>	oti Yojna launched?
	(A)	May 9, 2015 (B) August 15, 2015
	(C)	October 2, 2015 (D	December 12, 2015
94.	Witl	h which game/sport is Narsingh Ya	dav associated ?
	(A)	Weight lifting (B) Boxing
	(C)	Wrestling (D) Shooting
95.	Acco	ording to 2011 census, what is the	female literacy rate in India ?
	(A)	53.67 percent (B) 59.45 percent
	(C)	65.46 percent (D) 69.97 percent
A.P.	(CC) I	BOTANY-2016—A 26	

96.	Wha	t do the five rings or circles in	the	Olympic flag signify	?		*
	(A)	Countries	(B)	Nations			
	(C)	Geographical areas	(D)	Races			
97.	Who	was Abdul Sattar Edhi ?					
ď.	(A)	Bangladeshi writer	18.1				
	(B)	An Afghan tribal leader	**				
	(C)	A Pakistani philonthrophist					
	(D)	A Syrian philosopher					5
98.	Whi	ch day is observed as Internation	nal l	Day of Happiness ?			17
	(A)	14th February	(B)	20th March			
	(C)	18th April	(D)	12th July			
99.	How	many countries are members	of SA	ARC ?		E 3	
	(A)	6	(B)	7			
	(C)	8	(D)	9	100		
100.	Who	o is Bidhya Devi Bhandari ?					
	(A)	Progressive writer of West Ber	ngal		*		
	(B)	President of Nepal					
	(C)	T.V. Actor of Bhojpuri Cinema					
	(D)	None of the above		*			
A.P.	(CC)	BOTANY-2016—A 27		A 76 I I		P	T.O.