T.B.C. : 22/15/ET

Booklet Sr. No.

TEST BOOKLET

COMPUTER SCIENCE AND APPLICATIONS

PAPER III

Time	Allowed: 2½ Hours] [Maximum Marks: 150
	All questions carry equal marks.
	INSTRUCTIONS
1.	Write your Roll Number only in the box provided alongside. Do not write anything else on the Test Booklet.
2.	This Test Booklet contains 75 items (questions). Each item comprises four responses (answers). Choose only one response for each item which you consider the best.
3.	After the candidate has read each item in the Test Booklet and decided which of the given responses is correct or the best, he has to mark the circle containing the letter of the selected response by blackening it completely with ball point pen as shown below. H.B. Pencil should not be used in blackening the circle to indicate responses on the answer sheet. In the following example, response "C" is so marked:
	(A) (B) (D)
4.	Do the encoding carefully as given in the illustrations. While encoding your particulars or marking the answers on answer sheet, you should blacken the circle corresponding to the choice in full and no part of the circle should be left unfilled. You may clearly note that since the answer sheets are to be scored/evaluated on machine, any violation of the instructions may result in reduction of your marks for which you would yourself be responsible.
5.	You have to mark all your responses ONLY on the ANSWER SHEET separately given.
	Responses marked on the Test Booklet or in any paper other than the answer sheet shall

6. All items carry equal marks. Attempt all items.

not be examined. Use ball point pen for marking responses.

- Before you proceed to mark responses in the Answer Sheet fill in the particulars in the front portion of the Answer Sheet as per the instructions.
- 8. After you have completed the test, hand over the OMR answer sheet to the Invigilator.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

COMPUTER SCIENCE AND APPLICATIONS

Paper III

Time	e Allowed : 2½ Hours]		[Maximum Marks : 150
Note	:- This paper contains Seventy	five (75)	multiple choice questions, each
	question carries two (2) mar	ks. Attem	pt All questions.
1.	The stack in an 8085 microcomput	er system	can be described as a set of memory
	locations in the :		
	(A) Read only memory	(B)	Secondary memory
	(C) R/W Memory	(D)	None of these
2.	The inconsistency between the tv	vo copies (one copy in RAM and another copy
	in cache) is called:		
	(A) Cache mapping problem	(B)	RAM mapping problem
	(C) Cache coherence problem	(D)	RAM coherence problem
3.	In some CPUs, the most signific	ant byte i	is stored in the numerically lowest
	memory address. This represent	ation is co	alled
	(A) little-endian) (B)	big-endian
	(C) small-endian	(D)	large-endian
4.	The instruction INXB (8085 mi	croprocess	or) is a byte instruction.
	(A) 0	(B)	1
Ŷ	(C) 2	(D)	3
m 10	a southern III	0	

5.	Тур	ically is used	for synchro	nous transmission.	
	(A)	Single parity	(B)	RNR	
	(C)	Even parity	(D)	Cyclic parity	
6.	Ar	ecursive relationship betwe	en an entit	y and	
	(A)	itself	(B)	a subtype entity	
	(C)	an instance entity	(D)	an archetype entity	
7.	Whi	ich of the following is the	first step i	n database development ?	
e.	(A)	Logical database design			
	(B)	Physical database design	and defini	tion	
	(C)	Enterprise data modeling			
	(D)	Database implementation			
8.	Give	en the following two langu	ages :		W.
		$L_1 = \{0^n 1^n 2^n \mid n \ge 1\}$		2	
		$L_2 = \{a^{n!} n \ge 0\}$			
	Whi	ch one of the following is	correct ?		
	(A)	Only L ₁ is accepted by s	ome linear	bounded automaton	
	(B)	Only L2 is accepted by s	ome linear	bounded automaton	
	(C)	Both L_1 and L_2 are acce	pted by sor	ne linear bounded automs	aton
	(D)	Both L_1 and L_2 are not	accepted by	linear bounded automate	on
T.F	3.C. : 2	2/15/ET—III	3		P.T.O
, E		148		S-	

9. Given the following two languages:

$$L_1 = \{a^n b^n e^n | n \ge 0\}$$

$$L_2 = \{a^n b^j | n = j^2\}$$

Which of the following is correct ?

- (A) Only L1 is context free language
- (B) Only L2 is context free language
- (C) Both L1 and L2 are not context free language
- (D) Both L1 and L2 are context free language

10. Given the following two languages :

$$L_1 = \{(ab)^n \ a^k | n > k, k \ge 0\}$$

Which one of the following is correct?

- (A) L₁ is regular language and L₂ is not regular language
- (B) L1 is not regular language and L2 is regular language
- (C) Both L1 and L2 are regular
- (D) Both L1 and L2 are not regular

11.	The extension 'wav' is for :		
	(A) image	(B) video	e e
	(C) text	(D) audio	
12.	The shearing operation along X-s	xis takes the point (3, 4)	to given
	that shearing coefficient about X	-axis is 1/2.	
	(A) (4, 3)	(B) (5, 4)	
	(C) (4, 5)	(D) (4, 4)	
13.	LCD display devices :		an a
	(A) have poor viewing angle		
	(B) have electromagnetic emiss	on	
	(C) have high luminance		
	(D) have high contract		
14.	In projectors are not	parallel to each other.	
	(A) Perspective projection	(B) Axonometric pr	rojection
	(C) Cavalier projection	(D) Cabinet project	ion
T.B.	C. : 22/15/ET—III	5	P.T.O

- ing materials on a computer system.
 - (A) Animation

(B) Authoring

(C) Trimming

(D) Vectorization

16. Given the following two statements:

S₁: Every context sensitive language is recursive.

S2: There is a recursive language that is not context sensitive.

Which of the following is correct?

- (A) S₁ is correct and S₂ is not correct
- (B) S1 is not correct and S2 is correct
- (C) Both S1 and S2 are correct
- (D) Both S1 and S2 are not correct
- 17. You are given an OR problem and a XOR problem to solve. Then, which one of the following statements is correct?
 - (A) OR problem can be solved used radial basis function and XOR problem can be solve using single layer perceptron
 - (B) OR problem can be solved using single layer perceptron and XOR problem can be solved using multilayer perceptron
 - (C) both OR problem and XOR problem can be solved using single layer perceptron
 - (D) both OR problem and XOR problem can be solved only using multilayer perceptron

18.	A regular language is a :
4	(A) string
	(B) deterministic finite automaton
	(C) language accepted by a deterministic finite automaton
	(D) set of outputs
19.	The pumping lemma is used to show that a certain language is:
	(A) regular (B) not regular
	(C) finite language (D) infinite language
20.	The set of all nested sequences of balanced parentheses is a :
	(A) string (B) regular expression
19	(C) regular language (D) context free language
21.	If Σ is an alphabet and S is a start symbol, then $\left\{W \in \Sigma^* \mid S \stackrel{*}{\Rightarrow}_G W\right\}$ is :
	(A) a derivation
	(B) the language generated by a grammar
	(C) the language generated by a regular expression
	(D) a pushdown automaton

22.	If G	has no negative cycles, then	there is	shortest path from s to t that is
	simp	ole and hence has:		
	(A)	at least n - 1 edges	(B)	at most n - 1 edges
÷	(C)	at most n edges	(D)	at least n edges
23.	The	stack and string are example	es of:	
	(A)	abstract data types	(B)	overloaded operator functions
	(C)	struct objects	(D)	lipton information
24.	If G	has a topological ordering, t	hen G i	is a:
	(A)	Directed cyclic graph		
	(B)	Directed acyclic graph		
	(C)	Undirected cyclic graph	=	
	(D)	Undirected acyclic graph		*
т.в.	C. : 2	2/15/ET—III	8	

25.	First-order predicate calculus allows quantified variables to refer to :
i de la composition della comp	(A) predicates
	(B) functions
	(C) objects in the domain of discourse
**	(D) objects not in the domain of discourse
26.	Assume that all edge costs are distinct. Let S be any subset of nodes that
	is either empty nor equal to all of V, and let edge e = (V, W) be the minimum
	cost edge with one end in S and the other in V-S. Then every minimum spanning
	tree:
	(A) will be empty (B) does not contain the edge e
	(C) contains the edge e (D) none of these
27.	Asynchronous Transfer Mode (ATM) is also referred to as
	(A) Cell relay (B) Broad band
	(C) Smart switching (D) Grace routing
T.B.	C. : 22/15/ET—III 9

28.	Suppose we have a class to	emplate called s	tack and we wish t	o make a class
	from the class template for	a stack of strin	gs. We also wish to	declare a stack
	object called stk using this	stack class. To	do this, in the ma	in program we
	would type the line of coo	le:		
	(A) stack stk <string>;</string>	(B)	stack string <stk></stk>	:
	(C) stack <stk> string;</stk>	(D)	stack <string> stl</string>	c;
29.	Which of the following is	a widely accep	ted technique that	was chosen by
20.		a madely and p		
- 3	ISO ?			
	(A) Tunnelling	(B)	Tiering	2
	(C) Obliquing	(D)	Layering	
30.	A(n) is a heap in	n which the val	ue of each node is	greater than or
	equal to the values of its	s children (if it	has any children).	
27	(A) binary heap	(B)	max heap	
	(C) ordered heap	(D)	complete heap	- ,
	C. : 22/15/ET—III	10		

31.	The	IPV6 header has a fixed length	of :		
	(A)	16 octets	(B)	24 octets	
	(C)	32 octets	(D)	40 octets	
32.	Whi	ch of the following is declaration	for	default constructor ?	3
1	(A)	classname : : classname();			
	(B)	classname : : classname(parame	ter 1	ist);	11
	(C)	classname();			
	(D)	classname() (parameter list);			
33.		gives the method to invol	ce at	t run time.	
	(A)	Loading	(B)	Hiding	
	(C)	Typing	(D)	Dynamic binding	
34.	Whi	ch of the following is true in C+	+ ?		
	(A)	Pointer can never be null			
	(B)	Reference can never be null			
	(C)	Pointer cannot be changed	6		
	(D)	Reference can be changed		A	
т.в.	C. ; 2	2/15/ET—III 11			P.T.O.

35.	1000	is an abstr	act data type.					
₩.			W 6	72		2		
	(A)	int		(B)	double			
-,1	(C)	string		(D)	class	4		
36.	Wh	en we use property	and behaviou	rofa	a data w	ithout mod	lifying	it inside
	the	class, which one o	of the following	is t	etter ?	- 4		100
	19	10		,				
	(A)	aggregation					5.1	1, 1
		mggr og danon						
	(B)	inheritance						
	(13)	miertance				-		
	(C)	extension		- 88				
		2						
	(D)	restriction						
97	m.	- 1 NITHOOOD	AVD To	45	a 			
37.	The	windows NT/2000	AP supervisor	does	not incl	ude		
	(A)	NT executive		(B)	Hardwa	re abstrac	tion lay	ver
				N.				
	(C)	Win 32 API		(D)	NT Ker	nel		
T.B.C	2. : 2	22/15/ET—III	12					

38.	Pro	cess managers provide the following abstract machine functions
	exce	pt:
	(A)	Process creation and termination
	(B)	Process/thread synchronization
	(C)	Implementation of the address space
	(D)	Process memory leak error detection
00		
39.	Whi	ich of the following statements is true ?
	(A)	Detection/recovery ignores distinction between safe and unsafe states
	(B)	Avoidance algorithms avoid only unrecoverable states
	(C)	Detection/recovery strategies are more conservative than avoidance
		A Territoria de la Companya de la Co
		strategies
		A CONTRACT OF THE CONTRACT OF
	(D)	Detection/recovery determine if any sequence of transitions would result
		in all processes becoming unblocked
40.	An	example of an email user agent program is which of the following?
	***	TINTER :
	(A)	UNIX pine (B) UNIX cron
	(C)	UNIX EXIM (D) UNIX sendmail
T.B.	C. : 2	22/15/ET—III 13 P.T.O.

41.	Which statement about the network layer is incorrect?						
	(A)	Network layer defines its pac	ket form	nat to be identical to the data link			
		layer frame format					
	(B)	Host machines are identified	on the	internet using a network and host			
		address					
	(C)	In an internet, "nodes" are	complete	e networks			
	(D)	A specific network layer trans	smission	may consist of several hops across			
		individual networks					
42.	Which of the following is one of the two major types of decision support						
	syst	tems ?	1				
Je!	(A)	Text oriented	(B)	Number oriented			
	(C)	Model oriented	(D)	Application oriented			
43.	The	e de facto DSS hardware standar	rd is a(n	through which the DBMS			
	prov	vides data.					
	(A)	Web server	(B)	Data center			
	(C)	Mainframe	(D)	Local area network			
T.B.	C. : 2	22/15/ET—III	14	1.71			

44.		are essentia	lly hierarchy o	f if t	hen statem	ents. They	are most
	app	ropriate for catego	rical and inter	val da	ıta.		
	(A)	Neural nets		(B)	Time series		
	(C)	Decision trees		(D)	Time trees		
45.	In A	AI, a representation	n of is	s a con	mbination o	f data struct	ures and
	inte	rpretive procedure	s that is used	in the	e right way	in a progra	ım.
	(A)	Information		(B)	Knowledge		
	(C)	Intelligence		(D)	Problem		
46.	Plai	nning and constra	int satisfaction	are a	like in that	they both	1
	(A)	are more efficien	t than A ^K sea	reh			1
. 4	(B)	allow for the u	se of domain	indep	endent he	iristics tha	t exploit
		structure	X				
	(C)	can be used for	game playing a	as wel	ll as proble	m solving	
	(D)	are a good algor	ithmic fit for s	olving	crossword	puzzles	
T.B.0	. : 2	2/15/ET—III	15				P.T.O.

47.	Whi	ch of the following proble	ems is kno	own to have	a polynomial time
	solut	tion ?			8.
				6	_ a a
	(A)	Longest simple path prob	lem for a g	given graph	2.00
6	(B)	The 3-colorability problem	in graphs	100	
	(C)	The Eulerian cycle in a	graph		*
	(D)	The Hamiltonian cycle in	a graph		34
48.	Whi	ch of the following algorithm	c technique	s is used to so	lve the $0-1$ knapsack
		ATV 2 1528			31
	prob	olem ?			
		3.8.7			
	(A)	divide and conquer	(B)	greedy	19
		3 '8 W			
	(C)	dynamic programming	(D)	branch and	bound
		at Wat W. I have \$24.0	4.30		######################################
49.	Cha	racters that occur more fre	equently ha	ve	Huffman codes.
	(A)	Longer	(B)	Average	
	-				
	(C)	Shorter	(D)	Shorter or	longer
T.B.	C. : 2	22/15/ET—III	16		

	(A)	O(n)	(B)	O(n lg n)	2	
	(C)	$\Omega(n \mid g \mid n)$	(D)	• $\Omega(n^2)$		
					· ·	
51.	Whi	ich of the following algorith	ms can be	used to mo	st efficiently	determine
	the	presence of a cycle in a g	iven grap	h ?	13	
	(A)	Kruskal's algorithm				
32	(B)	Dijkstra's algorithm				
	(C)	Bellman-Ford algorithm	G 5)		14	
	0.000	and angertain.				
	(D)	All-pairs shortest path all	gorithm			
52.	Whe	en a bit is sent over a bina	ry symme	tric channel	the probabil	ity that it
	is re	eceived incorrectly is .02. T	he probab	ility that 00	000 is receive	d as 1001
4	is (.	$0196)^k$ where k is:				
	V 4.40		2000			4.5
1	(A)	1	(B)	2		
	(C)	3	(D)	4	100	T N
T.B.C	. : 23	2/15/ET—III	17		- makes	P.T.O.

The problem of sorting by comparisons is:

53.	Give	n the	frequenc	cies of t	he lette	rs in a	text i	s giver	n belov	v :		
		A		4								
E		В		2								
		E		4								
	**	1		2								
		L		2								
		R		1								
	The	Huffr	nan code	of A is	+ -							
	(A)	00	9			(B)	01					
	(C)	10				(D)	11					
54.	The	minir	num dist	ance of	a linear	code w	ith par	rity ch	eck ma	trix H	is eq	ual
	to		. number	of lines	arly	c	olumn	s of H.				
	(A)	smal	lest posit	tive, ind	ependen	it						
	(B)	smal	lest posit	tive, dep	endent							
	(C)	large	est positi	ve, inde	pendent	ž(
	(D)	large	est positi	ve, depe	endent							
T.B.	C. : 2	2/15/E	III—TT		3	18						
17												

- 55. In a Binary Hamming code the number of check digits is r > 0 then the length of code word is:
 - (A) $2^r + 1$

(B) 2^r

(C) $2^r - 1$

- (D) $2^r r 1$
- 56. LZ compression methods are for storage (Give appropriate answer).
 - (A) lossy

(B) lossless

(C) good

(D) skewed

57. The solution of LPP

$$Max. Z = 2x_1 + 2x_2$$

s.t.
$$3x_1 + 4x_2 \le 18$$

$$6x_1 + x_2 \le 12$$

$$x_1\geq 0,\,x_2\geq 0$$

is:

(A)
$$x_1 = \frac{24}{7}$$
 $x_2 = \frac{10}{7}$

(B)
$$x_1 = \frac{10}{7}$$
 $x_2 = \frac{24}{7}$

(C)
$$x_1 = 0$$
 $x_2 = \frac{9}{2}$

(D)
$$x_1 = 2$$
 $x_2 = 0$

58. The initial BFS of the following transportation problem using VAM:

	D	E	F	G	Availability
A	21	23	27	24	350
В	26	28	24	20	400
C	31	34	23	20	500
	300	325	375	250	No.
		Dem	and		

is :

A] 21	B 23	27	24
26	C 28	24	D 20
31	34	E 23	F 20

The values of A, B, C, D, E, F are:

- (A) 300, 50, 275, 125, 375, 125
- (B) 50, 300, 125, 275, 125, 375
- (C) 250, 100, 275, 125, 375, 125
- (D) 300, 50, 250, 175, 375, 125

T.B.C.: 22/15/ET--III

59. A company has five employees doing five jobs. The time in Hrs. each worker need to complete the job is shown below. Find the assignment so that total time is minimized:

			Time	of	Job	-3
		1	2	3	4	5
	1	4	5	8	7	8)
	2	2	6	3	2	6
Worker	3	7	9	2	8	4
WOLKEL	4	5	3	4	6	7
	5	8	9	7	5	8

(A)
$$1 \rightarrow 2$$
, $2 \rightarrow 3$, $3 \rightarrow 5$, $4 \rightarrow 1$, $5 \rightarrow 4$

(B)
$$1 \rightarrow 1$$
, $2 \rightarrow 3$, $3 \rightarrow 5$, $4 \rightarrow 2$, $5 \rightarrow 4$

(C)
$$1 \rightarrow 3$$
, $2 \rightarrow 1$, $3 \rightarrow 5$, $4 \rightarrow 2$, $5 \rightarrow 4$

(D)
$$1 \rightarrow 2$$
, $2 \rightarrow 3$, $3 \rightarrow 4$, $4 \rightarrow 5$, $5 \rightarrow 1$

- 60. Ellipsoid method for solving LPP has time worst case complexity.
 - (A) polynomial

(B) Non-polynomial

(C) constant

(D) none of these

	× ·	
. In	a Matroid M on set E :	
(/	A) A set $C \subseteq E$ is circuit \Leftrightarrow it is maximal dependent set	
(I	A set C ⊆ E is basis ⇔ it is minimal dependent set	
((C) A set $C \subseteq E$ is circuit \Leftrightarrow it is minimal dependent set	
(1	O) A set $C \subseteq E$ is circuit \Leftrightarrow it is maximal independent set	
. т	he perceptron learning rule is an algorithm for adjusting the network weigh	ts
W	to:	
(A) minimize the difference between input and outputs	
		3.51
(E	maximize the difference between input and outputs	
(0	minimize the difference between the actual and desired outputs	

(D) maximize the difference between the actual and desired outputs

$$\mu_{\mathbf{V}}(x) = \{0.2, 0.4, 0.8, 0.5, 0.3\}$$

The value of $\mu_{\overline{X} \cup \overline{Y}}$ will be :

- (A) {0.3, 0.4, 0.8, 0.5, 0.4}
- (B) {0.2, 0.1, 0.6, 0.2, 0.3}
- (C) {0.7, 0.6, 0.2, 0.5, 0.6}
- (D) {0.8, 0.9, 0.4, 0.8, 0.7}
- 64. An artificial neuron received d inputs x_1, x_2, \dots, x_d with weights w_1, w_2, \dots, w_d attached to the input links. The net input passed to the neuron is given by:
 - (A) Σx_i

(B) Σw_i

(C) $\sum w_i x_i$

- (D) $\sum w_i + \sum x_i$
- 65. Consider a fuzzy set Young as defined below:

Young =
$$\{(20, 1) (30, .8), (40, .6), (50, .4), (60, .2), (70, 0)\}$$

Then the alpha-cut for alpha = 0.4 for the set Young will be :

- (A) {(20, 0), (30, 0), (40, 0), (50, 1), (60, 1), (70, 1)}
- (B) {(20, 1), (30, 1), (40, 1), (50, 0), (60, 0), (70, 01)}
- (C) {(20, 0), (30, 0), (40, 0), (50, 0), (60, 1), (70, 1)}
- (D) {(20, 1), (30, 1), (40, 1), (50, 1), (60, 0), (70, 01)}

66.	A peer-peer (or peer-to-peer	network is called a	in Windows
	terminology.		
	(A) domain	(B) LAN	
	(C) Workgroup	(D) Container	
67.	Under UNIX, the death of a	process generates a(n).	that produces
	a(n)		to a constant
o a	(A) event/signal	(B) . signal/even	it.
	(C) interrupt/signal	(D) signal/inter	rrupt
68.	The UNIX CPU scheduling a	gorithm favours :	
~	(A) CPU bound processes	(B) I/O bound	processes
	(C) Real time processes	(D) Virtual pro	ocesses
69.	You can remove the Bourne s	hell variable, called box	ers, from the environ-
	ment by executing the follow	ng command :	
	(A) set-r boxers	(B) del boxers	
	(C) unset boxers	(D) set boxers	
Т.В.	C. : 22/15/ET—III	24	- N-1 5 " -

70.	Thr	ashing is a :						
(0)								
- 5	(A)	high paging ac	tivity					
							2)	2
	(B)	high executing	activity		-0			
			0				= 8	
	(C)	extremely long	process					22
			7					
	(D)	extremely long	virtual m	emory				
71.		is most	important	phase	of S	LDC.		
	(A)	Design -			(B)	Requirement	analysis	
	(C)	Testing			(D)	Coding		
							81	
72.	In .	each m	odule is te	ested in	n an	attempt to dis	cover any	errors in
	the	code.		1				
	uie	code.			,			24
			10 m		oz rezone			
	(A)	Integration tes	ting		(B)	Mutation		
	(C)	Unit testing			(D)	Programming		
TRC	. 9	9/15/ET_III		25				РТО

73.	Testing the software with actual d	lata in	actual environment is
	(A) Alpha testing	(B)	Beta testing
	(C) Unit testing	(D)	Integration testing
	ar a s		
74.	Running a system under live en	vironn	nent using live data is
	testing.	-	
	(A) Alpha	(B)	Beta
		OFFICE OF	
. 8	(C) Acceptance	(D)	Software
75.	Which of the following does not requ	quire ar	y knowledge of the inner working
		3	
	of particular software component	?	
			4. 9
	(A) Architectural design metric	(B)	Prototyping
	(C) Component metric	(D)	Complexity metric
TRO	C. : 22/15/ET—III 2	6	
1,0,0		976	