DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

T.B.C. : 28/15/ET

Booklet Sr. No.

TEST BOOKLET

MATHEMATICAL SCIENCE

PAPER III

Time Allowed : 21/2 Hours]

[Maximum Marks : 150

0001

All questions carry equal marks.

INSTRUCTIONS

- Write your Roll Number only in the box provided alongside. Do not write anything else on the Test Booklet.
- This Test Booklet contains 75 items (questions). Each item comprises four responses (answers). Choose only one response for each item which you consider the best.
- 3. After the candidate has read each item in the Test Booklet and decided which of the given responses is correct or the best, he has to mark the circle containing the letter of the selected response by blackening it completely with ball point pen as shown below. H.B. Pencil should not be used in blackening the circle to indicate responses on the answer sheet. In the following example, response "C" is so marked :

- Do the encoding carefully as given in the illustrations. While encoding your particulars or marking the answers on answer sheet, you should blacken the circle corresponding to the choice in full and no part of the circle should be left unfilled. You may clearly note that since the answer sheets are to be scored/evaluated on machine, any violation of the instructions may result in reduction of your marks for which you would yourself be responsible.
 You have to mark all your responses ONLY on the ANSWER SHEET separately given.
- Responses marked on the Test Booklet or in any paper other than the answer sheet shall not be examined. Use ball point pen for marking responses.
- 6. All items carry equal marks. Attempt all items.
- Before you proceed to mark responses in the Answer Sheet fill in the particulars in the front portion of the Answer Sheet as per the instructions.
- 8. After you have completed the test, hand over OMR answer sheet to the Invigilator.
- In case of any discrepancy found in English and Hindi Version in this paper, the English Version may be treated as correct and final.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

MATHEMATICAL SCIENCE

Paper III

Time Allowed : 21/2 Hours]

Maximum Marks : 150

Note :- This question paper contains seventy five (75) questions with multiple choice answers. Each question carries two (2) marks. Attempt all questions.

- 1. $\int_{1}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx \text{ is equal to } :$
 - (A) 2e (B) $\frac{e}{2}$ (C) 2 + e (D) $\frac{2}{e}$

Or

Let :

P1 : Probability of accepting a lot of good quality.

P₂ : Probability of rejecting a lot of bad quality.

P₃ : Probability of accepting a lot of bad quality.

P₄ : Probability of rejecting a lot of good quality.

Then :

(A) P₁ is the consumer's risk and P₂ is the producer's risk
(B) P₁ is the consumer's risk and P₃ is the producer's risk
(C) P₃ is the consumer's risk and P₂ is the producer's risk
(D) P₃ is the consumer's risk and P₄ is the producer's risk

गणितीय विज्ञान

प्रश्न-पत्र III

समय : 21⁄2 घण्टे]

|पूर्णांक : 150

नोट : इस प्रश्न-पत्र में पचहत्तर (75) बहुविकल्पीय प्रश्न हैं। प्रत्येक प्रश्न के दो (2) अंक हैं। सभी प्रश्नों के उत्तर दीजिये।

1. $\int_{1}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx$ किसके बराबर है ?

(A) 2e (B) $\frac{e}{2}$ (C) 2 + e (D) $\frac{2}{e}$

अथवा

मान लीजिए :

 P_1 : अच्छे गुण को स्वीकार करने की बड़ी संभावना P_2 : बुरे गुण को अस्वीकार करने की बड़ी संभावना P_3 : बुरे गुण को स्वीकार करने की बड़ी संभावना P_4 : अच्छे गुण को अस्वीकार करने की बड़ी संभावना तब :

(A) P_1 उपभोक्ता का जोखिम है और P_2 उत्पादक का जोखिम है(B) P_1 उपभोक्ता का जोखिम है और P_3 उत्पादक का जोखिम है(C) P_3 उपभोक्ता का जोखिम है और P_2 उत्पादक का जोखिम है

(D) P₃ उपभोक्ता का जोखिम है और P₄ उत्पादक का जोखिम है
 T.B.C. : 28/15/ET—III
 3

- Area of that part of cylinder x² + y² = a² which is cut out by the cylinder x² + z² = a² is :
 (A) 4a²
 (B) 2a²
 - (C) $8a^2$ (D) $16a^2$

Or

A market form in which a market is dominate by a smaller number of seller is :

(A) Discriminating Monopoly (B) Duopoly

(C) Oligopoly (D) Bilateral Monopoly

3. Which of the following statements is false ?

(A) The union of a family of open sets in a metric space is open

- (B) The intersection of an infinite number of open sets in a metric space is open
- (C) The intersection of a finite number of open sets in a metric space is open
- (D) The union of an infinite number of open sets in a metric space is open

4

- x² + y² = a² बेलन के उस भाग का क्षेत्रफल क्या होगा जोकि x² + z² = a² बेलन द्वारा काटा गया है ?
 - (A) $4a^2$ (B) $2a^2$
 - (D) $16a^2$

अथवा

बाजार का वह रूप कौन-सा है जिसमें बाजार में विक्रेताओं की कम संख्या की अधिकता होती है ?

- (A) पक्षपाती एकाधिकार(B) द्वयाधिकार
- (C) अल्पाधिकार (D) द्विपार्श्वीय एकाधिकार

3. निम्नलिखित में से कौनसा कथन असत्य है ?

- (A) मापन स्थान में खुले सेटों के एक परिवार का संघ खुला होता है
- (B) मापन स्थान में खुले सेटों की एक अपरिमित संख्या का सर्वनिष्ठ खुला होता है
- (C) मापन स्थान में खुले सेटों की एक परिमित संख्या का सर्वनिष्ठ खुला होता है

(D) मापन स्थान में खुले सेटों की अपरिमित संख्या का संघ खुला होता है

T.B.C. : 28/15/ET----III

(C) 8a²

Match List I with List II and select the *correct* answer from the codes given below the lists :

List I

List II

- (a) Testing homogeneity of (1) F-testcorrelation coefficients
- (b) Testing homogeneity of variances (2)
- $\Sigma(n_i-3)(z_i-\overline{z})^2$ with

ANOVA technique

usual' notations

Bartlett's test

- (c) Testing homogeneity of means (3)
- (d) Testing equality of two variances (4)

Codes :

	(a)	(b)	(c)	(d)
(A)	(4)	(1)	(2)	(3)
(B)	(2)	(3)	(4)	(1)
(C)	(3)	(2)	(4) 🤤	(1)
(D)	(1)	(4)	(3)	(2)

4. The Newton method for finding the reciprocal of a number "a" is :

(A) $x_{n+1} = 2x_n - ax_n^2$ (B) $x_{n+1} = x_n - \frac{a}{2}x_n^2$ (C) $x_{n+1} = \frac{1}{2}\left(x_n + \frac{a}{x_n}\right)$ (D) $x_{n+1} = x_n + \frac{a}{2}x_n^2$

T.B.C. : 28/15/ET-III

Or

अथवा

सूची I को सूची II से सुमेलित कीजिए और नीचे दिये गये कूटों का प्रयोग कर **सही** उत्तर चुनिए :

÷.	1152	सूची I				सूची II	
(<i>a</i>)	सहसम्ब	न्ध [ं] गुणांक व	हा समघात परं	ीक्षण	(1)	F-परीक्षण	
(b)	प्रसरणों	का समधात	परीक्षण		(2)	$\Sigma(n_i - 3) (z_i - \overline{z})^2$ 30	ायुक्त
2						संकेतों के साथ	
(c)	माध्य व	त समघात प	गरीक्षण -		(3)	बार्टलेट का परीक्षण	
(d)	दो प्रसर	णों का समा	नता परीक्षण	((***)) **	(4)	ANOVA तकनीक	
कूट	:						
	(a)	- (b)	. (c)	(d)			
(A)	(4)	(1)	(2)	(3)			
(B)	(2)	(3)	(4)	(1)			
(C)	(3)	(2)	(4)	(1)			
(D)	(1)	(4)	(3)	(2)			
मंख्या	""" का	व्यक्तम् मा	त करने के हि	ना जाउन ह	afêr a	්නාබ ම 2	

संख्या "a" का व्युत्क्रम प्राप्त करने के लिए न्यूटन विधि कौनसी है ?

(A) $x_{n+1} = 2x_n - ax_n^2$ (B) $x_{n+1} = x_n - \frac{a}{2}x_n^2$ (C) $x_{n+1} = \frac{1}{2}\left(x_n + \frac{a}{x_n}\right)$ (D) $x_{n+1} = x_n + \frac{a}{2}x_n^2$

T.B.C. : 28/15/ET-III

Consider the following IPP :

Min.

$$Z = 3x_1 + 2.5x_2$$

Subject to :

 $x_1 + 2x_2 \ge 20$ $3x_1 + 2x_2 \ge 50$

 x_1, x_2 are non-negative integers.

The optimal solution is :

- (A) $x_1 = 14, x_2 = 4$ (B) $x_1 = 13, x_2 = 6$
- (C) $x_1 = 16, x_2 = 2$ (D) $x_1 = 12, x_2 = 8$

5. Which of the following is not true ?

(A) dual of C_{00} is l' (B) dual of C_0 is l'

(C) dual of C is l' (D) dual of C_{00} is C_0

Or

If average demand for an inventory item is 200 units per day, lead time is three days and safety stock is 100 units, the reorder point is :

(A) 200 units
 (B) 300 units
 (C) 600 units
 (D) 700 units

T.B.C. : 28/15/ET-III

8

अथवा

निम्नलिखित IPP पर विचार कीजिए :

Min.

 $Z = 3x_1 + 2.5x_2$

बशर्ते :

 $x_1 + 2x_2 \ge 20$

 $3x_1 + 2x_2 \ge 50$

 x_1, x_2 गैर-ऋणात्मक पूर्णांक हैं।

इष्टतम समाधान है :

(A) $x_1 = 14, x_2 = 4$ (B) $x_1 = 13, x_2 = 6$

(C) $x_1 = 16, x_2 = 2$ (D) $x_1 = 12, x_2 = 8$

निम्नलिखित में से कौनसा सत्य नहीं है ?

(A) C₀₀ का द्वैत *l*' है (B) C₀ का द्वैत *l*' है

(C) C का द्वैत l' है (D) C₀₀ का द्वैत C₀ है

अथवा

9

यदि एक सामान सूची मद की औसत मांग 200 इकाई प्रतिदिन है, अग्रता का समय 3 दिन है

और सुरक्षा संग्रह 100 इकाई है, तो पुनः मांग बिन्दु क्या है ?

(A) 200 इकाई (B) 300 इकाई

(C) 600 इकाई (D) 700 इकाई

T.B.C. : 28/15/ET-III

6. The arc length of the curve $\alpha(t) = \left(t \sin t, t \cos t, \frac{\sqrt{8}}{3}t^{3/2}\right)$ between t = 0 and

Or

t = 1 is : (A) $\frac{1}{2}$ (B) 2 (C) $\frac{3}{2}$ (D) 3

Read the following statements :

- If the failure time of a system follows exponential distribution, then its hazard rate is constant.
- (II) If the failure time of a system follows exponential distribution, then its mean time to failure is the reciprocal of hazard rate.

Which of the above two statements is/are true ?

- (A) Only (I) (B) Only (II)
- (C) Both (I) and (II) (D) Neither (I) nor (II)
- 7. If $f: X \to Y$ is a continuous mapping of a metric space X into a metric space Y, then the following is not *true*:
 - (A) the image of any compact subset of X is compact
 - (B) the image of any compact subset of X may not be compact
 - (C) the image of any closed set in X is a closed set in Y
 - (D) none of the above

6,	t=0 और $t=1$ के बीच व	$\overline{*} \ \alpha(t) = \left(t \sin t, t \cos t, \frac{\sqrt{8}}{3}t\right)$	^{3/2}) के चाप की लम्बाई क्या
	* ?	S. I.	
	(A) $\frac{1}{2}$	(B) 2	2
	(C) $\frac{3}{2}$	(D) 3	

अश्ववा

निम्नलिखित कथन को पढ़िए :

- (I) यदि एक तन्त्र के क्षयकाल घातांकी वितरण का अनुसरण करता है तब इसकी जोखिम दर स्थिर है
- (II) यदि एक तन्त्र के क्षयकाल, घातांकी वितरण का अनुसरण करता है तब इसके क्षय का माध्य समय जोखिम दर का व्युत्क्रमी है

उपर्युक्त दोनों कथनों में कौन-सा/से सही है/हैं ?

- (A) केवल (I) (B) केवल (II)
- (C). (I) और (II) दोनों (D) न तो (I) और न ही (II)
- यदि f : X → Y मापन स्थान X में मापन स्थान X का सतत् मापन है तो निम्नलिखित सत्य नहीं है :
 - (A) X के किसी सघन उपसेट का छायाचित्र सघन है
 - (B) X के किसी सघन उपसेट का छायाचित्र सघन नहीं भी हो सकता है
 - (C) X में किसी बन्द सेट का छायाचित्र Y में बन्द सेट है
 - (D) उपर्युक्त में से कोई नहीं

T.B.C. : 28/15/ET-III

A continuous random variable Y has p.d.f. :

$$f(y) = \begin{cases} 5y^4, & 0 \le y \le 1\\ & \\ 0, & \text{otherwise} \end{cases}$$

If

10

$$P(Y > C) = P(Y \le C),$$

then the value of C is :

(A)
$$\left(\frac{1}{2}\right)^{\frac{1}{4}}$$
 (B) $\left(\frac{1}{2}\right)^{\frac{1}{5}}$
(C) $\left(\frac{1}{5}\right)^{\frac{1}{2}}$ (D) $\left(\frac{1}{5}\right)^{\frac{1}{5}}$

8. The solution of the integral equation $\phi(x) = x + \int_{0}^{\infty} (t - x) \phi(t) dt$ is :

(A) $\sin x$ (B) $\cos x$ (C) $\tan x$ (D) $\sec x$

Or

Consider the matrices :

$$V = \begin{bmatrix} 0.32 & 0.87 \\ 0.68 & 0.13 \end{bmatrix} \qquad W = \begin{bmatrix} 0.9 & 0.8 \\ 0.2 & 0.1 \end{bmatrix}$$
$$X = \begin{bmatrix} 0.1 & 0 & 0.1 \\ 0.1 & 0.2 & 0.1 \\ 0.1 & 0.1 & 0.2 \end{bmatrix} \qquad Y = \begin{bmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \end{bmatrix}$$

The matrix that could be a transition matrix for a Markov chain is :

12

(A)	v		C	B)	W	
(C)			- C	D)	Y	

अथवा

एक सतत् यादृच्छिक चर Y का p.d.f. :

यदि :

$$P(Y > C) = P(Y \le C)$$

तो C का मान है :

(A)
$$\left(\frac{1}{2}\right)^{\frac{1}{4}}$$
 (B) $\left(\frac{1}{2}\right)^{\frac{1}{5}}$
(C) $\left(\frac{1}{5}\right)^{\frac{1}{2}}$ (D) $\left(\frac{1}{5}\right)^{\frac{1}{5}}$

8. समाकल समीकरण $\phi(x) = x + \int_{0}^{x} (t-x) \phi(t) dt$ का समाधान क्या है ? (A) sin x (B) cos x

(C) $\tan x$ (D) $\sec x$

अथवा

W

Y

13

नीचे दिए गए मापन पर विचार कीजिए :

$$\begin{aligned} \nabla &= \begin{bmatrix} 0.32 & 0.87 \\ 0.68 & 0.13 \end{bmatrix} & W = \begin{bmatrix} 0.9 & 0.8 \\ 0.2 & 0.1 \end{bmatrix} \\ X &= \begin{bmatrix} 0.1 & 0 & 0.1 \\ 0.1 & 0.2 & 0.1 \\ 0.1 & 0.1 & 0.2 \end{bmatrix} & Y = \begin{bmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \end{bmatrix} \\ T &= \begin{bmatrix} 0.1 & 0.2 \\ 0.4 & 0.4 \end{bmatrix} \\ T &= \begin{bmatrix} 0.1 & 0.2 \\ 0.4 & 0.4 \end{bmatrix} \\ T &= \begin{bmatrix} 0.1 & 0.2 \\ 0.4 & 0.4 \end{bmatrix} \\ T &= \begin{bmatrix} 0.1 & 0.2 \\ 0.4 & 0.4 \end{bmatrix} \\ T &= \begin{bmatrix} 0.1 & 0.2 \\ 0.4 & 0.4 \end{bmatrix} \\ T &= \begin{bmatrix} 0.1 & 0.2 \\ 0.4 & 0.4 \end{bmatrix} \\ T &= \begin{bmatrix} 0.1 & 0.2 \\ 0.4 & 0.4 \end{bmatrix} \\ T &= \begin{bmatrix} 0.1 & 0.2 \\ 0.4 & 0.4 \end{bmatrix} \\ T &= \begin{bmatrix} 0.1 & 0.2 \\ 0.4 & 0.4 \end{bmatrix} \\ T &= \begin{bmatrix} 0.1 & 0.2 \\ 0.4 & 0.4 \end{bmatrix} \\ T &= \begin{bmatrix} 0.1 & 0.2 \\ 0.4 & 0.4 \end{bmatrix} \\ T &= \begin{bmatrix} 0.1 & 0.2 \\ 0.4 & 0.4 \end{bmatrix} \\ T &= \begin{bmatrix} 0.1 & 0.2 \\ 0.4 & 0.4 \end{bmatrix} \\ T &= \begin{bmatrix} 0.1 & 0.2 \\ 0.4 & 0.4 \end{bmatrix} \\ T &= \begin{bmatrix} 0.1 & 0.2 \\ 0.4 & 0.4 \end{bmatrix}$$

(A) V (B) (C) X (D)

T.B.C. : 28/15/ET-III

The remainder when 2^{50} is divided by 7 is :

9.

(A) 1
(B) 2
(C) 3
(D) 4

Or

Let $X = (X_1, X_2, \dots, X_p)', \mu = E(X)$ and $\Sigma = V(X)$. Let X, μ and Σ be partitioned as :

$$\underline{\mathbf{X}}_{-} = \begin{pmatrix} \mathbf{X}_{11}^{(1)} \\ -k \times 1 \\ \mathbf{X}_{-}^{(2)} \end{pmatrix}, \ \mu = \begin{pmatrix} \mu_{-k \times 1}^{(1)} \\ -k \times 1 \\ \mu_{-k}^{(2)} \\ - \end{pmatrix}, \ \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ -k \times k & -k \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}.$$

For what choice of the matrix P, the components of the vector $X^{(2)} - PX^{(1)}$ are uncorrelated with the components of the vector $X^{(1)}$?

- (A) $-\sum_{12}\sum_{22}^{-1}$ (B) $\sum_{12}\sum_{22}^{-1}$
- (C) $-\Sigma_{21}\Sigma_{11}^{-1}$ (D) $\Sigma_{21}\Sigma_{11}^{-1}$

10. The sequence space l^p is strictly convex if and only if :

(A) p = 1 (B) p < 1(C) 1 < p (D) $p = \infty$

Or

For the function :

$$f(x) = x_1 + 2x_2 + x_1x_2 - x_1^2 - x_2^2$$
(A) $X_0 = \left(\frac{2}{3}, \frac{5}{3}\right)$ is the point of maxima
(B) $X_0 = \left(\frac{2}{3}, \frac{5}{3}\right)$ is the point of minima
(C) $X_0 = \left(\frac{4}{3}, \frac{5}{3}\right)$ is the point of maxima
(D) $X_0 = \left(\frac{4}{3}, \frac{5}{3}\right)$ is the point of minima

2^{50}	को	7	द्वारा	विभाजित	करने	पर	হাম	क्या	होगा	?	
(A)	1							3	(B)	2	
(C)	3							w ĝ	(D)	4	1

अथवा

मान लें $X = (X_1, X_2, ..., X_p)', \mu = E(X) और <math>\Sigma = V(X)$ । मान लें X, μ और Σ को ऐसे विभाजित किया गया :

$$\mathbf{X}_{\sim} = \begin{pmatrix} \mathbf{X}_{11}^{(1)} \\ \sim k \times 1 \\ \mathbf{X}_{\sim}^{(2)} \end{pmatrix}, \ \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_{11}^{(1)} \\ \sim k \times 1 \\ \boldsymbol{\mu}_{\sim}^{(2)} \end{pmatrix}, \ \boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ k \times k & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix},$$

मापन P के किस चुनाव के लिए, वेक्टर X⁽²⁾ - PX⁽¹⁾ के अवयव, वेक्टर X⁽¹⁾ के अवयवों के साथ असम्बन्धित हैं ?

(A) $-\Sigma_{12}\Sigma_{22}^{-1}$ (B) $\Sigma_{12}\Sigma_{22}^{-1}$ (C) $-\Sigma_{21}\Sigma_{11}^{-1}$ (D) $\Sigma_{21}\Sigma_{11}^{-1}$

10. अनुक्रम स्थान l^p कठोरता से उत्तल होगा यदि और केवल यदि :

(A) p = 1 (B) p < 1(C) 1 < p (D) $p = \infty$

अथवा

फलन $f(x) = x_1 + 2x_2 + x_1x_2 - x_1^2 - x_2^2$ के लिए : (A) $X_0 = \left(\frac{2}{3}, \frac{5}{3}\right)$ अधिकतम का बिन्दु है (B) $X_0 = \left(\frac{2}{3}, \frac{5}{3}\right)$ न्यूनतम का बिन्दु है (C) $X_0 = \left(\frac{4}{3}, \frac{5}{3}\right)$ अधिकतम का बिन्दु है (D) $X_0 = \left(\frac{4}{3}, \frac{5}{3}\right)$ न्यूनतम का बिन्दु है

T.B.C. : 28/15/ET-III

11. The inverse Laplace transform of $e^{3t} \sin 2t$ is :

(A) $\frac{2}{(s-3)^2+4}$ (B) $\frac{3}{(s-2)^2+9}$ (C) $\frac{s^{-3}}{(s-3)^2+4}$ (D) $\frac{s}{(s-3)^2+4}$ Or

If the joint p.d.f. of two random variables X and Y is given as :

 $f(x, y) = x + y, \ 0 \le x \le 1, \ 0 \le y \le 1.$ Then the conditional expectation $E\left[X | Y = \frac{1}{2}\right]$ is :

- (A) $\frac{7}{12}$ (B) $\frac{5}{12}$ (C) $\frac{3}{12}$ (D) $\frac{1}{12}$
- 12. $\int_{0}^{\infty} \frac{dx}{x(\log x)^2}$ is equal to :
 - (A) $\log 2$ (B) $\log \left(\frac{1}{2}\right)$
 - (C) $\frac{1}{\log\left(\frac{1}{2}\right)}$ (D) $\frac{1}{\log\left(\frac{1}{2}\right)}$

Or

16

If both the state space and parameter space are continuous, then it is called a :

(A) Discrete parameter Markov chain

(B) Continuous parameter Markov chain

(C) Discrete parameter Markov process

(D) Continuous parameter Markov process

e^{3t} sin 2t का प्रतीप लाप्लास रूपान्तर क्या है ?

(A)	$\frac{2}{(s-3)^2+4}$	(B	
(C)	$\frac{s^{-3}}{(s-3)^2+4}$	(D	$) \frac{s}{(s-3)^2+4}$
- T. C.			

अथवा

दो यादृच्छिक चरों X और Y का संयुक्त p.d.f. नीचे दिया गया है : $f(x, y) = x + y, \ 0 \le x \le 1, \ 0 \le y \le 1.$ तो दशायिक अपेक्षा (सप्रतिबंध प्रत्याशा) $E\left[X | Y = \frac{1}{2}\right]$ है : (A) $\frac{7}{12}$ (B) $\frac{5}{12}$ (C) $\frac{3}{12}$ (D) $\frac{1}{12}$

- 12. $\int_{0}^{\infty} \frac{dx}{x(\log x)^2}$ किसके बराबर है ?
 - (A) $\log 2$ (B) $\log\left(\frac{1}{2}\right)$ $\frac{1}{2}$
 - (C) $\overline{\log\left(\frac{1}{2}\right)}$ (D) $\overline{\log 2}$

अथवा

यदि दशा स्थान और प्रचाल स्थान दो सतत हैं, तो इसे क्या कहा जाता है ?

- (A) असतत प्राचल मार्कोव शृंखला
- (B) सतत प्राचल मार्कोव शृंखला
- (C) असतत प्राचल मार्कोव प्रक्रिया
- (D) सतत प्राचल मार्कोव प्रक्रिया

T.B.C. : 28/15/ET-III

- 13. Which of the following is true ?
 - (A) Every T_1 space is T_2 (B) Every T_0 space is T_1
 - (C) Every T₂ space is T₀ (D) None of these

Or

In a life table, probability q_x of dying of a person between the age interval x and (x + 1) and m_x , the central mortality rate are related as :

- (A) $q_x = 2m_x/(2 m_x)$ (B) $q_x = m_x/(2 + m_x)$
- (C) $q_x = 2m_x/(2+m_x)$ (D) $q_x = m_x/(2-m_x)$

14. The initial value problem $\frac{dy}{dx} = y^{4/3}$, y(0) = 0:

- (A) has a unique solution (B) does not have any solution
- (C) has more than one solution (D) none of these

Or

Choose the correct statement :

- (A) If the primal problem is feasible while the dual is not, the objective function of the primal problem is unbounded
- (B) If the primal problem is feasible while the dual is not, the objective function of the dual problem is unbounded
- (C) If the dual problem is feasible, while the primal is not, the objective function of the primal problem is unbounded
- (D) None of the above

- 13. निम्नलिखित में से कौनसा सत्य है ?
 - (A) प्रत्येक T_1 स्थान T_2 है (B) प्रत्येक T_0 स्थान T_1 है
 - (C) प्रत्येक T_2 स्थान T_0 है (D) इनमें से कोई नहीं

अथवा

एक जीवन तालिका में आयु अन्तराल x और (x + 1) के बीच एक व्यक्ति के मरने की संभावना q_x और m_x , केन्द्रीय मृत्यु दर कैसे सम्बन्धित है ?

- (A) $q_x = 2m_x/(2 m_x)$ (B) $q_x = m_x/(2 + m_x)$
- (C) $q_x = 2m_x/(2+m_x)$ (D) $q_x = m_x/(2-m_x)$

14. आरम्भिक मान प्रश्न $\frac{dy}{dx} = y^{4/3}, y(0) = 0$:

- (A) का एक विलक्षण समाधान है (B) का कोई समाधान नहीं है
- (C) के एक से अधिक समाधान हैं (D) इनमें से कोई नहीं

अथवा

सही कथन चुनिए :

- (A) यदि प्राथमिक प्रश्न सम्भाव्य है जबकि द्विविध सम्भाव्य नहीं है, प्राथमिक प्रश्न का वास्तविक फलन अपरिबद्ध है
- (B) यदि प्राथमिक प्रश्न संभाव्य है जबकि द्विविध सम्भाव्य नहीं है, द्विविध प्रश्न का वास्तविक फलन अपरिबद्ध है
- (C) यदि द्विविध प्रश्न संभाव्य है जबकि प्राथमिक सम्भाव्य नहीं है। प्राथमिक प्रश्न का वास्तविक फलन अपरिबद्ध है
- (D) उपर्युक्त में से कोई नहीं

T.B.C. : 28/15/ET-III

- 15. The plane containing n and b is called :
 - (A) Osculating plane (B) Normal plane
 - (C) Tangent plane (D) Rectifying plane

Or

The family of uniform densities on [0, 0] has an monotone likelihood ratio in :

(A) $T(\underline{x}) = \min_{1 \le i \le n} x_i$ (B) $T(\underline{x}) = \max_{1 \le i \le n} x_i$ (C) $T(\underline{x}) = \overline{x}$ (D) $T(\underline{x}) = \max_{1 \le i \le n} x_i - \min_{1 \le i \le n} x_i$

16. V_R be a vector space of polynomials in x with inner product given by

$$\langle p, q \rangle = \int_{0}^{1} p(x)q(x)dx$$

Let P(x) = x + 2, then $||p||^2$ is :

(A) $\frac{27}{6}$ (B) $\frac{29}{3}$ (C) $\frac{1}{3}$ (D) $\frac{19}{3}$

Or

20

Dynamic programming divides problems into a number of :

(A) Conflicting objective functions (B) Policies

(C) Unrelated constraints (D) Decision stages

- 15. n और b वाले समतल को क्या कहा जाता है ?
 (A) आश्लेषी समतल (B) सामान्य समतल
 (C) स्पर्शी समतल (D) परावर्ती समतल अथवा
 [0, 0] पर एकसमान घनत्व के परिवार के एकरूप संभावित अनुपात में :
 - (A) $T(\underline{x}) = \min_{1 \le i \le n} x_i$ (B) $T(\underline{x}) = \max_{1 \le i \le n} x_i$ (C) $T(\underline{x}) = \frac{1}{\overline{x}}$ (D) $T(\underline{x}) = \max_{1 \le i \le n} x_i - \min_{1 \le i \le n} x_i$

16. आन्तरिक उत्पाद (आंतर गुणनफल) के साथ x में बहुपदों का एक वेक्टर स्थान $V_{
m R}$ का होना, निम्नलिखित के द्वारा दिया जाता है

$$\langle p, q \rangle = \int_{0}^{1} p(x)q(x)dx$$

मान सें $P(x) = x + 2$, तों $||p||^2$ है :
(A) $\frac{27}{6}$ (B) $\frac{29}{3}$
(C) $\frac{1}{3}$ (D) $\frac{19}{3}$
अधवा

गतिशील क्रमादेश प्रश्न को किसकी अधिकता में विभाजित कर देता है ?

(A) विरोधी अभिदृश्यक फलनों में
 (B) नीतियों में

(C) असम्बन्धित निरोधों में
(D) निर्णय अवस्थाओं में

T.B.C. : 28/15/ET-III

21

17. Which of the following is not true about Sturm-Liouville problem

 $[r(x)y']' + [q(x) + \lambda p(x)] y = 0$

 $\alpha y(a) + \beta y'(a) = 0$ and

 $\gamma y(b) + \delta y'(b) = 0, \quad x \in [a, b]$

- (A) All eigen values of Sturm-Liouville problem are real and nonnegative
- (B) Eigen functions corresponding to different eigen value are orthogonal with respect to weight function
- (C) Sturm-Liouville problem always has an eigen function
- (D) For each eigen value of a Sturm-Liouville problem there exists only one linearly independent eigen function

Or

If r is the observed correlation coefficient in a sample of n pairs of observations from a correlated bivariate normal population, then the statistic :

$$\frac{1}{2}\log_e\left(\frac{1+r}{1-r}\right)$$

22

is approximately normal with variance :

(A)
$$\frac{1}{n-1}$$
 (B) $\frac{1}{n}$
(C) $\frac{1}{n-3}$ (D) $\frac{1}{n-2}$

17. निम्नलिखित में से कौन स्टर्म-लियोविल प्रश्न :

 $[r(x)y']' + [q(x) + \lambda p(x)] y = 0$

 $\alpha y(a) + \beta y'(a) = 0$ तथा

 $\gamma \ y(b) + \delta y'(b) = 0, \quad x \in [a, b]$

के बारे में सत्य नहीं है ?

- (A) स्टर्म-लियोविल प्रश्न के सभी आइगन मान वास्तविक और गैर-ऋणात्मक हैं
- (B) विभिन्न आइगन मानों से सम्बन्ध रखने वाले आइगन फलन, भार फलन से संदर्भ में लाम्बिक हैं
- (C) स्टर्म-लियोविल प्रश्न का सदैव एक आइगन फलन होता है
- (D) स्टर्म-लियोविल प्रश्न के प्रत्येक आइगन मान के लिए केवल एक रेखीय स्वतन्त्र आइगन फलन अस्तित्व में रहता है

अथवा

यदि एक सहसम्बद्ध द्विचर सामान्य जनसंख्या से परीक्षणों के n युग्मों के एक नमूने में परीक्षण किया गया सहसम्बद्ध गणांक r है तो सांख्यिकी :

$$\frac{1}{2}\log_e\left(\frac{1+r}{1-r}\right)$$

किस अन्तर के साथ लगभग सामान्य होगी ?

(A) $\frac{1}{n-1}$ (B) $\frac{1}{n}$ (C) $\frac{1}{n-3}$ (D) $\frac{1}{n-2}$

T.B.C. : 28/15/ET-III

18. Laplace transform of cos kt is :

(A)
$$\frac{s}{s^2 - k^2}$$
 (B) $\frac{s}{s^2 + k^2}$
(C) $\frac{k}{s^2 - k^2}$ (D) $\frac{k}{s^2 + k^2}$

Or

In optimization problem with inequality constraints, the Kuhn-Tucker conditions are :

(A) Sufficient conditions to solve the optimization problems

(B) Necessary conditions to solve the optimization problems

- (C) Sufficient but not necessary conditions to solve the optimization problems
- (D) Neither sufficient nor necessary conditions to solve the optimization problems
- 19. Lagrange's equation of holonomic systems are :

(A)
$$\frac{d}{dt} \left(\frac{\partial \mathbf{T}}{\partial \dot{q}_k} \right) - \frac{\partial \mathbf{T}}{\partial q_k} = \mathbf{Q}_k$$
 $(k = 1, 2,, n)$
(B) $\frac{d}{dt} \left(\frac{\partial \mathbf{T}}{\partial \dot{q}_k} \right) + \frac{\partial \mathbf{T}}{\partial q_k} = \mathbf{Q}_k$ $(k = 1, 2,, n)$

(C)
$$\frac{d}{dt} \left(\frac{\partial \Gamma}{\partial \dot{q}_k} \right) \cdot \frac{\partial \Gamma}{\partial q_k} = \mathbf{Q}_k \qquad (k = 1, 2, \dots, n)$$

(D) $\frac{d}{dt} \left(\frac{\partial \mathbf{T}}{\partial \dot{q}_k} \right) / \frac{\partial \mathbf{T}}{\partial q_k} = \mathbf{Q}_k$ (k = 1, 2,, n)

T.B.C. : 28/15/ET-III

24

cos kt का लाप्लास रूपान्तरण क्या है ?

(A)
$$\frac{s}{s^2 - k^2}$$
 (B) $\frac{s}{s^2 + k^2}$
(C) $\frac{k}{s^2 + k^2}$ (D) $\frac{k}{s^2 + k^2}$

अथवा

विषमता निरोधों के साथ इष्टतमीकरण प्रश्न में कुहन-टकर दशायें क्या हैं ? (A) इष्टतमीकरण समस्याओं (प्रश्नों) के समाधान के लिए पर्याप्त दशायें (B) इष्टतमीकरण प्रश्नों के समाधान के लिए आवश्यक दशायें (C) इष्टतमीकरण प्रश्नों के समाधान के लिए पर्याप्त दशायें परन्तु आवश्यक नहीं (D) इष्टतमीकरण प्रश्नों के समाधान के लिए न तो पर्याप्त और न ही आवश्यक दशायें परिवेशीय तन्त्र के लाग्रांज समीकरण कौनसी है ?

(A) $\frac{d}{dt}\left(\frac{\partial \mathbf{T}}{\partial \dot{q}_k}\right) - \frac{\partial \mathbf{T}}{\partial q_k} = \mathbf{Q}_k$ (k = 1, 2,, n)

(B) $\frac{d}{dt}\left(\frac{\partial \mathbf{T}}{\partial \dot{q}_k}\right) + \frac{\partial \mathbf{T}}{\partial q_k} = \mathbf{Q}_k$ (k = 1, 2,, n)

(C) $\frac{d}{dt}\left(\frac{\partial \mathbf{T}}{\partial \dot{q}_k}\right) \cdot \frac{\partial \mathbf{T}}{\partial q_k} = \mathbf{Q}_k$ (k = 1, 2,, n)

(D) $\frac{d}{dt} \left(\frac{\partial \mathbf{T}}{\partial \dot{q}_k} \right) / \frac{\partial \mathbf{T}}{\partial q_k} = \mathbf{Q}_k$ (k = 1, 2,, n)

T.B.C. : 28/15/ET-III

19.

Double sampling is also known as :

- (A) two-phase sampling (B) two-stage sampling
- (C) two-directional sampling (D) none of these

20. The set of all 2×2 matrices over the field of real numbers under the usual addition and multiplication of matrices is :

(A) Not a ring (B) A ring with unity

(C) A commutative ring (D) An integral domain

Or

Let T be a random variable denoting the failure time of the system, which follows Weibull distribution with parameters α and β . Then, the system hazard rate is given by :

26

(A) $1 - \alpha \beta t^{\alpha - 1}$ (B) $\alpha \beta t^{\alpha - 1}$ (C) $1 - e^{-\beta t^{\alpha}}$ (D) $e^{-\beta t^{\alpha}}$

21. The order of convergence in Newton-Raphson method is :

- (A) 0 (B) 1
- (C) 1.6 (D) 2

दोहरी नमूना जांच को और कैसे भी जाना जाता है ? (B) द्विअवस्था नमूना जांच (A) द्विचरण नमूना जांच (D) इनमें से कोई नहीं (C) द्विदिशाकृत नमूना जांच सभी 2 × 2 मैट्रिक्स का सेट, सामान्य योग के अन्तर्गत वास्तविक संख्याओं के क्षेत्र के ऊपर 20.और मैट्रिक्स का गुणन, है : (A) वलय में नहीं (B) एकता वाला वलय (C) क्रमविनिमेय वलय (D) एक समाकल डोमेन अथवा मान लीजिए कि यादृच्छिक चर एक तन्त्र के क्षयकाल को बताता है जो α और β प्रचालनों के साथ वीबुल वितरण का अनुसरण करता है तब तन्त्र जोखिम दर कैसे दिया जाता है ?

27

अथवा

(A) $1 - \alpha \beta t^{\alpha - 1}$ (B) $\alpha \beta t^{\alpha - 1}$ (C) $1 - e^{-\beta t^{-\alpha}}$ (D) $e^{-\beta t^{\alpha}}$

21. न्यूटन-रैफ्सन विधि में अभिसरण का अनुक्रम क्या है ?

(A) 0 (B) 1

(C) 1.6 (D) 2

T.B.C. : 28/15/ET-III

Let $X_{\alpha} (\alpha = 1, 2, ..., N)$ be N independent observations from $N_{p}(\mu, \Sigma), \overline{X} = \frac{1}{N} \sum_{\alpha=1}^{N} X_{\alpha}$, and let $Z_{\alpha}(\alpha = 1, 2, ..., N)$ be i.i.d. variates distributed according to $N_{p}(0, \Sigma)$. Then an unbiased estimator for Σ is given by :

(A)
$$\frac{1}{N-1}\sum_{\alpha=1}^{N-1} \left(X_{\alpha} - \overline{X}_{\alpha} \right) \left(X_{\alpha} - \overline{X}_{\alpha} \right)$$

(B)
$$\frac{1}{N-1}\sum_{\alpha=1}^{N}Z_{\alpha}Z_{\alpha}'$$

(C)
$$\frac{1}{N}\sum_{\alpha=1}^{N} \left(X_{\alpha} - \overline{X}_{\alpha} \right) \left(X_{\alpha} - \overline{X}_{\alpha} \right)$$

(D)
$$\frac{1}{N} \sum_{\alpha=1}^{N} Z_{\alpha} Z_{\alpha}'$$

22. If the force is conservative, then work done on the particle :

(A) around a closed path in the force field is zero

(B) around an open path in the force field is zero

(C) around a closed path in the force field is non-zero

(D) none of the above

Or

In a two-bin inventory system, the amount contained in the second bin is equal to the :

- (A) ROP (Reorder Point)
- (B) EOQ (Economic Order Quantity)
- (C) Safety stock (D) Average stock

T.B.C. : 28/15/ET-III

28

Or

अथवा

मान लीजिए X_{α} ($\alpha = 1, 2, ..., N$), पदों $N_{p}(\mu, \Sigma)$, $\overline{X} = \frac{1}{N} \sum_{\alpha=1}^{N} X_{\alpha}$ से N स्वतन्त्र परीक्षण हैं और मान लीजिए $Z_{\alpha}(\alpha = 1, 2, ..., N)$, पद $N_{p}(\underline{0}, \Sigma)$ के अनुसार वितरित i.i.d. विचर है, तब Σ के लिए निष्पक्ष समाकलक किसके द्वारा किया जाता है ?

(A)
$$\frac{1}{N-1}\sum_{\alpha=1}^{N-1} \left(X_{\alpha} - \overline{X}_{\alpha} \right) \left(X_{\alpha} - \overline{X}_{\alpha} \right)$$

(B)
$$\frac{1}{N-1}\sum_{\alpha=1}^{N}Z_{\alpha}Z_{\alpha}$$

(C)
$$\frac{1}{N} \sum_{\alpha=1}^{N} \left(X_{\alpha} - \overline{X} \right) \left(X_{\alpha} - \overline{X} \right)$$

(D)
$$\frac{1}{N} \sum_{\alpha=1}^{N} Z_{\alpha} Z_{\alpha}'$$

22. यदि बल परिमित (कंजर्वेटिव) है तो कण पर किया गया कार्य :

(A) बल क्षेत्र में एक बन्द पथ के चारों ओर शून्य है

(B) बल क्षेत्र में एक खुले पथ के चारों ओर शून्य है

(C) बल क्षेत्र में एक बन्द पथ के चारों ओर गैर-शून्य है

(D) उपर्युक्त में से कोई नहीं

अथवा

एक द्वि-धानी सूची तन्त्र में, दूसरी धानी में एकत्रित मात्रा किसके बराबर है ?

(A) ROP (रिऑर्डर बिन्दु)
 (B) EOQ (आर्थिक अनुक्रम मात्रा)

29

(C) सुरक्षा भंडार (D) औसत भंडार

T.B.C. : 28/15/ET-III

23. $\iiint \frac{dx \, dy \, dz}{(x + y + z + 1)^3}$, where integral is taken over the interior of the tetrahedron

bounded by the planes x = 0, y = 0, z = 0 and x + y + z = 1, is :

(A)
$$\frac{1}{2} \log \frac{256}{e^5}$$
 (B) $\frac{1}{4} \log \frac{256}{e^5}$
(C) $\frac{1}{8} \log \frac{256}{e^5}$ (D) $\frac{1}{16} \log \frac{256}{e^5}$

Or

If X is a random p-vector with $V(X) = \Sigma$, and if P is any constant matrix of order $k \times p$, then V(PX) is equal to :

- (A) Σ (B) $P\Sigma$
- (C) $P'\Sigma P$ (D) $P\Sigma P'$
- 24. Find the first approximation using Picard's method to solve the initial value

problem :

$$\frac{dy}{dx} = 1 + xy, \ y(0) = 0$$
(A) $\frac{x}{2}$ (B) x
(C) $\frac{x}{3}$ (D) 2x

T.B.C. : 28/15/ET-III

30

23. $\iiint \frac{dx \, dy \, dz}{(x + y + z + 1)^3}, \text{ and where and } x = 0, y = 0, z = 0 \text{ and } x + y + z = 1 \text{ tended}$

द्वारा सीमित चतुष्फलक का अन्दर लिया गया है, क्या है ?

(A)
$$\frac{1}{2} \log \frac{256}{e^5}$$

(B) $\frac{1}{4} \log \frac{256}{e^5}$
(C) $\frac{1}{8} \log \frac{256}{e^5}$
(D) $\frac{1}{16} \log \frac{256}{e^5}$

अधवा

यदि X , V(X) = Σ वाला यादृच्छिक p-वेक्टर है और यदि P एक $k \times p$ अनुक्रम का स्थिर मैट्रिक्स है, तब V(PX) किसके बराबर है ?

- (A) Σ (B) $P\Sigma$
- (C) $P'\Sigma P$ (D) $P\Sigma P'$

24. आरम्भिक मान प्रश्न :

 $\frac{dy}{dx} = 1 + xy, \ y(0) = 0$

31

के समाधान के लिए पिकार्ड विधि का प्रयोग करते हुए प्रथम सन्निकटन प्राप्त कीजिए :

- (A) $\frac{x}{2}$ (B) x
- (C) $\frac{x}{3}$ (D) 2x

T.B.C. : 28/15/ET-III

A production facility is trying to determine the best batch size for an item that is produced intermittently. This item has an annual demand of 1,000 units, an annual carrying cost of Rs. 10 per unit, and a setup cost of Rs. 400. They operate 50 weeks per year, and can produce 40 units per week. What is the best batch size for this item ?

- (A) 283 (B) 400
- (C) 800 (D) 65

25. The set X =] 0, 1, [U] 1, 3 [is :

- (A) connected (B) closed
- (C) not connected . (D) none of these

Or

Let X be distributed as Poisson with parameter λ and let X₁, X₂,, X_n be a sample on X. Consider the following statements :

(1) X is the UMVUE of λ

(2) \overline{X} is the UMVUE of λ

Select the *correct* answer using the codes given below :

Codes :

(A) only (1) is true (B) only (2) is true

32

(C) both (1) and (2) are true

(D) none of these is true

T.B.C. : 28/15/ET-III

Or

आन्तरायिक रूप में उत्पन्न होने वाले एक स्तम्भ के लिए सर्वोत्तम दल आमाप के निर्धारण के लिए, एक उत्पादन सुसाध्यता कोशिश कर रही है। इन मदों की वार्षिक मौंग 1,000 इकाइयौँ हैं, वार्षिक वहन क्षमता 10 रुपये प्रति इकाई है और स्थापन का मूल्य 400 रुपये है। इनका प्रचालन प्रति वर्ष 50 सप्ताह होता है और ये 40 इकाई प्रति सप्ताह बना सकते हैं। इस मद के लिए सर्वोत्तम दल आमाप क्या है ?

- (A) 283 (B) 400
- (C) 800 (D) 65
- 25. सेट X =] 0, 1, [U] 1, 3 [कैसा है ?
 - (A) जुड़ा हुआ है (B) बन्द है
 - (C) जुड़ा नहीं है (D) इनमें से कोई नहीं

अथवा

मान लीजिए कि λ प्रचालन के साथ प्वासों के रूप में X वितरित है और मान लीजिए कि X पर नमूने X₁, X₂,, X_n हैं। निम्नलिखित कथनों पर विचार कीजिए :

- λ 雨 UMVUE, X 青
- (2) λ का UMVUE X 卷
- नीचे दिये गये कूटों का प्रयोग कर सही उत्तर चुनिए :

कूट :

(A) केवल (1) सत्य है(B) केवल (2) सत्य है

(C) (1) और (2) दोनों सत्य हैं (D) इनमें से कोई सत्य नहीं है

T.B.C. : 28/15/ET-III

33

26. The dimension of v, the kinematic coefficient of viscosity is given by :

(A) LT^{-2} (B) LT^{-1} (C) L^2T^{-2} (D) L^2T^{-1}

Or

The optimal solution of the problem :

Max. $f(X) = x_1 + 2x_2 - x_2^2$ Subject to :

$$x_1 + 2x_2 \le 4$$
$$3x_1 + 2x_2 \le 6$$
$$x_1, x_2 \ge 0$$

is :

(A) $x_1 = \frac{12}{9}, x_2 = \frac{4}{3}$ (B) $x_1 = \frac{12}{9}, x_2 = \frac{2}{3}$ (C) $x_1 = \frac{14}{9}, x_2 = \frac{4}{3}$ (D) $x_1 = \frac{14}{9}, x_2 = \frac{2}{3}$

27. The characteristics of the partial differential equation $4u_{xx} + 5u_{xy} + u_{yy} + u_x + u_y = 2$ are :

(A) $y - x = c_1, 4y - x = c_2$ (B) $y + x = c_1, 4y + x = c_2$ (C) $y - x = c_1, y - 4x = c_2$ (D) $y + x = c_1, y + 4x = c_2$ (D) $y + x = c_1, y + 4x = c_2$

Let X_1, X_2, \ldots, X_n be a random sample from a population with pdf :

$$f(x, \theta) = \frac{2}{\theta^2} (\theta - x), \ 0 \le x \le \theta$$

the estimator of θ by the method of moments is :

- (A) $3\overline{X}$ (B) $2\overline{X}$
- (C) \overline{X} (D) none of these

T.B.C. : 28/15/ET—III

34

26. v का आयाम, श्यानता का गतिक गुणांक किसके द्वारा दिया जाता है ?

(A)	LT^{-2}	(B)	LT^{-1}
(C)	L^2T^{-2}	(D)	L^2T^{-1}

अथवा

निम्नलिखित प्रश्न का इष्टतम समाधान क्या है ?

Max. $f(\mathbf{X}) = x_1 + 2x_2 - x_2^2$

बशर्ते

27.

 $\begin{array}{ll} x_1 + 2x_2 \leq 4 \\ 3x_1 + 2x_2 \leq 6 \\ x_1, x_2 \geq 0 \\ (A) \quad x_1 = \frac{12}{9}, x_2 = \frac{4}{3} \\ (B) \quad x_1 = \frac{12}{9}, x_2 = \frac{2}{3} \\ (C) \quad x_1 = \frac{14}{9}, x_2 = \frac{4}{3} \\ (D) \quad x_1 = \frac{14}{9}, x_2 = \frac{2}{3} \\ \hline \text{atilities failed attribution } 4u_{xx} + 5u_{xy} + u_{yy} + u_x + u_y = 2 \quad \text{atilities failed attribution } \frac{4}{6} ? \\ (A) \quad y - x = c_1, 4y - x = c_2 \\ (C) \quad y - x = c_1, y - 4x = c_2 \\ (D) \quad y + x = c_1, y + 4x = c_2 \end{array}$

अथवा

मान लीजिए कि X₁, X₂,, X_n एक pdf $f(x, \theta) = \frac{2}{\theta^2} (\theta - x), 0 \le x \le \theta$ वाले जनसंख्या से यादृच्छिक नमूने हैं। घूर्ण (आघूर्ण) विधि द्वारा θ का अवकलक है : (A) $3\vec{X}$ (B) $2\vec{X}$

35

(C) X (D) इनमें से कोई नहीं

T.B.C. : 28/15/ET-III

- 28. Let F be a field, then which of the following is correct ?
 - (A) F has only one ideal {0}
 - (B) F has only two ideals {0} and F itself
 - (C) (0) and F are maximal ideals of F
 - (D) None of the above

Or

The dual of the quadratic programming problem :

Min. $C^TX + X^T BX$

Subject to :

X > 0

where B is a positive definite matrix, can be considered to be :

36

(A)	Max	$+ \mathbf{Y}^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{Y}$	
24	Subject to	$-\dot{\mathbf{Y}} \leq \mathbf{C}$	
(B)	Max	$-\mathbf{Y}^{T}\mathbf{B}^{-1}\mathbf{Y}$	
2	Subject to	$-\mathbf{Y} \leq \mathbf{C}$	
(C)	Max	$+\mathbf{Y}^{T}\mathbf{B}^{-1}\mathbf{Y}$	
	Subject to	Y ≤ C 、	
(D)	Max	$-\mathbf{Y}^{T}\mathbf{B}^{-1}\mathbf{Y}$	
	Subject to	$\mathbf{Y} \leq \mathbf{C}$	
T.B.C. : 2	8/15/ET—III	<i>14</i>	
28. मान लीजिए कि F एक क्षेत्र है, तब निम्नलिखित में से कौनसा सही है ?

- (A) F का केवल एक अभीष्ट (0) है
- (B) F के केवल 2 अभीष्ट (0) और F अपने आप
- (C) (0) और F, F के अधिकतम अभीष्ट हैं
- (D) उपर्युक्त में से कोई नहीं

अथवा

निम्नलिखित द्विघाती प्रोग्रामिंग प्रश्न का द्वैत है :

Min. $C^{T}X + X^{T}BX$

बशर्ते

 $X \ge 0$

जहाँ B एक धनात्मक निश्चित मैट्रिक्स है, इसे किसके लिए विचारा जा सकता है ?

37

(A)	Max	$+Y^TB^{-1}Y$
	बशर्ते	$-Y \leq C$
(B)	Max	$-\mathbf{Y}^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{Y}$
	बशतें	$-Y \leq C$
(C)	Max	$+Y^TB^{-1}Y$
	बशतें	$Y \leq C$
(D)	Max	$-\mathbf{Y}^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{Y}$
	बशर्ते	$Y \leq C$

T.B.C. : 28/15/ET-III

29. The curve made by a cable of fixed length suspended from two fixed points for minimum gravitational potential energy is :

(A)	circular	(B)	parabolic

(C) hyperbolic (D) catenary

Or

If
$$A = \begin{pmatrix} A_{11} & A_{12} \\ k \times k & \\ A_{21} & A_{22} \end{pmatrix} \sim W_p(n, \Sigma)$$

where

$$\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ k \times k & \\ \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix},$$

then the distribution of the $(p - k) \times (p - k)$ symmetric matrix $A_{22} - A_{21} A_{11}^{-1}A_{12}$ is :

- (A) $W_k (n p + k, \Sigma_{22.1})$
- (B) $W_p(n, \Sigma_{22.1})$
- (C) $W_{p-k}(n, \Sigma_{22.1})$
- (D) $W_{p-k}(n-k, \Sigma_{22.1})$

where $\Sigma_{22,1} = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}^{-1}$

30. $\int_{0}^{\infty} e^{-x} \cos x \, dx$ is equal to :

(A) $\frac{1}{4}$ (B) $\frac{1}{8}$ (C) $\frac{1}{6}$ (D) $\frac{1}{2}$

T.B.C. : 28/15/ET-III

38

29. न्यूनतम गुरुत्वीय स्थितिज ऊर्जा के लिए दो संयोजित बिन्दुओं से लटकते हुए एक निश्चित लम्बाई वाली तार द्वारा बनाया गया वक्र है :

- (A) वृत्ताकार (B) परवलयिक
- (C) अतिपरवलयिक (D) रज्जु वक्र

अथवा

यदि
$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ k \times k & \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix} \sim \mathbf{W}_p(n, \Sigma)$$

जहाँ

$$\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ k \times k & \\ \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix},$$

तब $(p - k) \times (p - k)$ सममित मैट्रिक्स $A_{22} - A_{21} A_{11}^{-1} A_{12}$ का वितरण क्या है ?

- (A) $W_k (n p + k, \Sigma_{22.1})$
- (B) $W_p(n, \Sigma_{22,1})$
- (C) $W_{p-k}(n, \Sigma_{22.1})$
- (D) $W_{p-k}(n-k, \Sigma_{22.1})$

जहाँ $\Sigma_{22.1} = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$

30. $\int e^{-x} \cos x \, dx$ किसके बराबर है ?

(A) $\frac{1}{4}$ (B) $\frac{1}{8}$ (C) $\frac{1}{6}$ (D) $\frac{1}{2}$

T.B.C. : 28/15/ET-III

In a rectifying inspection single sampling plan, assume all the defectives found are replaced by good ones, and let, N, be the lot size, n be the sample size, p is the probability of finding a defective and P_a is the probability of acceptance of the lot. Then Average Outgoing Quality (AOQ) is given by :

(A) $\frac{(N-n)P_a}{N}$ (B) $\frac{(N-n)P_a}{n}$ (C) $\frac{p(N-n)P_a}{n}$ (D) $\frac{p(N-n)P_a}{N}$

31. If f is a field of characteristics 2, then $\forall a, b \in F, (a + b)^2$ is equal to :

(A) $a^2 + b^2$ (B) a + b(C) a + b + 2ab (D) a + b + ab

Or

Let A_1 , A_2 , be a sequence of independent events and let $E = \lim \sup$

A_n. If $\sum_{n=1}^{\infty} P(A_n) = \infty$, then : (A) P(E) = 1 (B) P(E) = 0(C) $P(E) = \frac{1}{4}$ (D) $P(E) = \frac{3}{4}$

32. The resolvent kernel of Volterra's integral equation $y(x) = f(x) + \lambda \int_{0}^{x} k(x, t) y(t) dt$

with kernel k(x, t) = 1 is :

(A) $\tau^{\lambda(x+t)}$ (B) $\tau^{\lambda(x-t)}$ (C) $\tau^{\lambda(x,t)}$ (D) $\tau^{\lambda(x^2+t^2)}$

T.B.C. : 28/15/ET-III

•

40

अथवा

एक संशोधन जांच एक नमूना-जांच योजना में मान लीजिए कि सभी पाये गये विकृतों को सही नमूनों से विस्थापित कर दिया और मान लीजिए कि N खण्ड आमाप है, n नमूने का आमाप है, p एक विकृत को पाने की संभावना है और P_a खण्ड की स्वीकृत की संभावना है। तब औसत निकलने वाले गुण (AOQ) को कैसे दिया गया है ?

(A)
$$\frac{(N-n)P_a}{N}$$
 (B) $\frac{(N-n)P_a}{n}$
(C) $\frac{p(N-n)P_a}{n}$ (D) $\frac{p(N-n)P_a}{N}$

31. यदि f लक्षणों 2 का एक क्षेत्र है, तब $\forall a, b \in F, (a + b)^2$ किसके बराबर होगा ?

(A) $a^2 + b^2$ (B) a + b(C) a + b + 2ab(D) a + b + ab

ं अथवा

मान लीजिए कि A_1, A_2, \ldots स्वतन्त्र घटनाओं का एक अनुक्रम है और मान लीजिए

- E = lim sup A_n | यदि $\sum_{n=1}^{\infty} P(A_n) = \infty$, तव :

 (A) P(E) = 1 (B) P(E) = 0

 (C) $P(E) = \frac{1}{4}$ (D) $P(E) = \frac{3}{4}$
- (C) I(D) 4

32. k(x,t) = 1 सार वाले वॉल्टेरा की समाकलन समीकरण $y(x) = f(x) + \lambda \int_{0}^{x} k(x,t) y(t) dt$ का सार

41

विघटक क्या है ?

- (A) $\tau^{\lambda(x+t)}$ (B) $\tau^{\lambda(x-t)}$
- (C) $\tau^{\lambda(x,t)}$ (D) $\tau^{\lambda(x^2+t^2)}$

T.B.C. : 28/15/ET-III

Consider the following statements :

- The family of densities of N(μ₀, σ²), where μ₀ known and σ² unknown is a one-parameter exponential family.
- (2) The family of densities $f(x) = \frac{1}{\pi} \cdot \frac{1}{1 + (x \theta)^2}, \quad \frac{-\infty < x < \infty}{-\infty < \theta < \infty}$ is a one-parameter exponential family.
- (3) The family of geometric distribution pmfs is a one-parameter exponential family

Of these statements :

- (A) (1) and (2) are correct (B) (1) and (3) are correct
- (C) only (1) is correct (D) all (1), (2) and (3) are correct
- 33. The stress tensor at a point P is

 $\sigma_{ij} = \begin{bmatrix} 7 & 0 & -2 \\ 0 & 5 & 0 \\ -2 & 0 & 4 \end{bmatrix}$

Then the stress vector on the plane at P whose unit normal is $\hat{n} = \frac{2}{3}\hat{i} - \frac{2}{3}\hat{j} + \frac{1}{3}\hat{k}$ is given by :

42

(A) $\vec{F}_n = 4\hat{i} - \frac{5}{3}\hat{j}$ (B) $\vec{F}_n = 4\hat{i} + \frac{5}{3}\hat{j}$ (C) $\vec{F}_n = 4\hat{i} - \frac{10}{3}\hat{j}$ (D) $\vec{F}_n = 4\hat{i} + \frac{10}{3}\hat{j}$

अथवा

निम्नलिखित कथनों पर विचार कीजिए :

- (1) $N(\mu_0, \sigma^2)$ के घनत्व का परिवार, जहाँ μ_0 ज्ञात है और σ^2 अज्ञात है, एक एकल प्रचालक घातांकी परिवार है
- (2) घनत्वों $f(x) = \frac{1}{\pi} \cdot \frac{1}{1 + (x \theta)^2}, \quad -\infty < x < \infty$ का परिवार एकल प्रचालक घातांकी परिवार है
- (3) ज्यामितिक का वितरण pmf का परिवार एक एकल प्रचालक घातांकी परिवार है इनमें कथनों में से :
- (A) (1) और (2) सही हैं (B) (1) और (3) सही हैं
- (C) केवल (1) सही है (D) (1), (2), (3) सभी सही हैं

33. बिन्दु P पर तनाव प्रदिश :

$$\sigma_{ij} = \begin{bmatrix} 7 & 0 & -2 \\ 0 & 5 & 0 \\ -2 & 0 & 4 \end{bmatrix}$$

तब P पर, जिसको इकाई नॉर्मल $\hat{n} = \frac{2}{3}\hat{i} - \frac{2}{3}\hat{j} + \frac{1}{3}\hat{k}$, समतल पर तनाव वेक्टर कैसे दिया जायेगा ?

(A) $\vec{F}_n = 4\hat{i} - \frac{5}{3}\hat{j}$ (B) $\vec{F}_n = 4\hat{i} + \frac{5}{3}\hat{j}$ (C) $\vec{F}_n = 4\hat{i} - \frac{10}{3}\hat{j}$ (D) $\vec{F}_n = 4\hat{i} + \frac{10}{3}\hat{j}$

T.B.C. : 28/15/ET-III

If X is distributed as $N_p(\mu, \Sigma)$, A is $q \times p$ matrix of constant elements of p_{x1}

rank $q(\leq p)$, and if d is $q \times 1$ vector of constants, then AX + d is distributed as :

(A)
$$N_{p} (A\mu + d, A\Sigma A' + dd')$$
 (B) $N_{q} (A\mu, A\Sigma A')$
(C) $N_{q} (A\mu + d, A\Sigma A')$ (D) $N_{p} (A\mu + d, A\Sigma + d)$

 Let X ~ b(n, p), 0 ≤ p ≤ 1, then a minimax estimate of p of the form αX + β based on the squared error loss function is :

(A)
$$d^*(\mathbf{X}) = \frac{\mathbf{X}}{\sqrt{n} (1 + \sqrt{n})} - \frac{1}{2(\sqrt{n} - 1)}$$

(B)
$$d^*(\mathbf{X}) = \frac{\mathbf{X}}{\sqrt{n}(\sqrt{n-1})} + \frac{1}{2(1+\sqrt{n})}$$

(C)
$$d^*(X) = \frac{X}{\sqrt{n}(1+\sqrt{n})} + \frac{1}{2(1-\sqrt{n})}$$

(D)
$$d^{*}(\mathbf{X}) = \frac{\mathbf{X}}{\sqrt{n}(\sqrt{n}-1)} - \frac{1}{2(\sqrt{n}-1)}$$

Or

44

The local public library, which checks out the books at one deck, the mean arrival rate is 1 user in every 2 minutes, the check out time has mean of 1.5 minutes and a standard deviation of 0.5 minute with an unknown distribution, then the average number of users in the system is :

- (A) 4 (B) 3
- (C) 2 (D) 1

अथवा

यदि X, N_p(μ , Σ) के रूप में वितरित होता है और श्रेणी $q(\leq p)$ के अचर तत्वों का $p^{\times 1}$ $q \times p$ मैट्रिक्स A है, और यदि d अचरों का वेक्टर $q \times 1$ है तब AX + d किस रूप में वितरित है :

(A)
$$N_p (A\mu + d, A\Sigma A' + dd')$$
 (B) $N_q (A\mu, A\Sigma A')$

(C)
$$N_q (A\mu + d, A\Sigma A')$$
 (D) $N_p (A\mu + d, A\Sigma + d)$

34. मान लीजिए X ~ b(n, p), $0 \le p \le 1$, तब स्क्वार्ड त्रुटि क्षय फलन के आधार पर रूप $\alpha X + \beta$ के p का एक अल्पमहिष्ठ आकलन क्या है ?

(A)
$$d^{*}(\mathbf{X}) = \frac{\mathbf{X}}{\sqrt{n}(1+\sqrt{n})} - \frac{1}{2(\sqrt{n}-1)}$$

(B)
$$d^{*}(\mathbf{X}) = \frac{\mathbf{X}}{\sqrt{n} (\sqrt{n} - 1)} + \frac{1}{2(1 + \sqrt{n})}$$

(C)
$$d^{*}(\mathbf{X}) = \frac{\mathbf{X}}{\sqrt{n}(1+\sqrt{n})} + \frac{1}{2(1-\sqrt{n})}$$

(D)
$$d^{*}(\mathbf{X}) = \frac{\mathbf{X}}{\sqrt{n}(\sqrt{n}-1)} - \frac{1}{2(\sqrt{n}-1)}$$

अथवा

एक स्थानीय लोक पुस्तकालय में जो एक डेक पर पुस्तकों की जांच करती है, औसत आगमन दर प्रत्येक 2 मिनट में 1 प्रयोक्ता है। जांच का औसत समय 1.5 मिनट है और अज्ञात वितरण के साथ मानक विचलन 0.5 मिनट है, तो इस तन्त्र में प्रयोक्ताओं की औसत संख्या क्या है ? (A) 4 (B) 3

45

1

T.B.C. : 28/15/ET-III

35. The joint p.d.f. of two-dimensional random variable (X, Y) is given by :

$$f(x, y) = \begin{cases} \frac{8}{9} xy, & 1 \le x \le y \le 2\\ 0, & \text{elsewhere} \end{cases}$$

Then the marginal p.d.f. of X is :

(A)
$$g(x) = \begin{cases} \frac{1}{9} x(4-x^2), & 1 \le x \le 2\\ 0, & \text{elsewhere} \end{cases}$$

(B) $g(x) = \begin{cases} \frac{4}{9} x(4-x^2), & 1 \le x \le 2\\ 0, & \text{elsewhere} \end{cases}$
(C) $g(x) = \begin{cases} \frac{2}{9} x(4-x^2), & 1 \le x \le 2\\ 0, & \text{elsewhere} \end{cases}$

(D) None of the above

Or

Laplace equation is :

- (A) $u_{xx} + u_{yy} u_z = 0$ (B) $u_{xx} + u_{yy} + u_{zz} = 0$
- (C) $u_{xx} + u_{yy} u_{zz} = 0$ (D) $u_{xx} + u_{yy} + u_z = 0$

36.

- Which of the following is not one of assumptions of an M/M/1 model ?
 - (A) Arrivals are independent of preceding arrivals but the arrival rate does not change overtime
 - (B) Arrivals are served on a last-in, first-served basis
 - (C) Service time follow the negative exponential probability distribution
 - (D) Arrivals follow the Poisson distribution and come from an infinite population

35. दो आयामी यादृच्छिक चरों (X, Y) का संयुक्त p.d.f. नीचे दिया है :

$$f(x, y) = \begin{cases} \frac{8}{9} xy, \ 1 \le x \le y \le 2\\ 0, & \exists r = 2 \\ 0, & \exists r = 2 \end{cases}$$

तब X का सीमान्त p.d.f. क्या है ?

(A)
$$g(x) = \begin{cases} \frac{1}{9} x(4-x^2), & 1 \le x \le 2\\ 0, & 3 = \sqrt{3} \end{cases}$$

(B)
$$g(x) = \begin{cases} \frac{4}{9} x(4-x^2), & 1 \le x \le 2\\ 0 & 3 = 4 \end{cases}$$

(C)
$$g(x) = \begin{cases} \frac{2}{9} x(4-x^2), & 1 \le x \le 2\\ 0, & 3 = 3 \end{cases}$$

(D) उपर्युक्त में से कोई नहीं

अथवा

लाप्लास समीकरण है :

(A) $u_{xx} + u_{yy} - u_z = 0$ (B) $u_{xx} + u_{yy} + u_{zz} = 0$ (C) $u_{xx} + u_{yy} - u_{zz} = 0$ (D) $u_{xx} + u_{yy} + u_z = 0$

36. निम्नलिखित में से कौनसा एक, M/M/1 मॉडल की कल्पना नहीं है ? (A) आगमन, पूर्व आगमनों से स्वतन्त्र है परन्तु आगमन दर समय के पार नहीं बदलती

(B) आगमनों को अन्तिम-प्रवेश, प्रथम-पाओ के आधार पर दिया जाता है

(C) सेवा काल, ऋणात्मक घातांकी संभाव्यता वितरण का अनुसरण करता है (D) आगमन, प्वासों वितरण का अनुसरण करते हैं और एक अनन्त जनसंख्या से आते हैं

P.T.O.

47

Let $T : \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation T(x, y, z, w) = (x - y + z + w, x + 2z - w, x + y + 3z - 3w). Then the dimension of the kernel of T is :

- (A) 0 (B) 1
- (C) 2 (D) 3

37.

In selection of a ratio estimator in preference to a simple random sample mean, it is required that :

(A) $\rho > \frac{C_x}{C_y}$ (B) $\rho > \frac{1}{2} \frac{C_x}{C_y}$ (C) $\rho < \frac{1}{2} \frac{C_x}{C_y}$ (D) $\rho < \frac{C_x}{C_y}$

Or

Let G be a group of order 15. Then the number of 3-sylow subgroups of G is :

- (A) 0 (B) 1
- (C) 3 (D) 5

38. Dual simplex method starts with :

(A) both primal and dual feasible basic solution

(B) both primal and dual infeasible basic solution

(C) a primal feasible but dual infeasible basic solution

48

(D)' dual feasible but primal infeasible basic solution

मान लीजिए T : $\mathbb{R}^4 \to \mathbb{R}^3$ रेखित रूपान्तरण T(x, y, z, w) = (x - y + z + w, x + 2z - w, x + y + 3z - 3w), तब T के सार का आयाम क्या है ? (A) 0 (B) 1

(C) 2 (D) 3

37. साधारण यादृच्छिक नमूना माध्य की वरीयता देने में अनुपाती आकलक के चयन में किसकी आवश्यकता है ?

(A) $\rho > \frac{C_x}{C_y}$ (B) $\rho > \frac{1}{2} \frac{C_x}{C_y}$ (C) $\rho < \frac{1}{2} \frac{C_x}{C_y}$ (D) $\rho < \frac{C_x}{C_y}$

अथवा

मान लीजिए अनुक्रम 15 का एक समूह G है, तब G के 3-सिलो उपसमूह की संख्या क्या है ?

- (A) 0 (B) 1
- (C) 3 (D) 5
- 38. द्विविध सिम्प्लेक्स विधि किससे प्रारम्भ होती है ?

(A) प्राथमिक और द्विविध सम्भाव्य आधारभूत समाधान दोनों

(B) प्राथमिक और द्विविध असम्भाव्य आधारभूत समाधान दोनों

(C) एक प्राथमिक संभाव्य लेकिन द्विविध असम्भाव्य आधारभूत समाधान

(D) द्विविध सम्भाव्य लेकिन प्राथमिक असम्भाव्य आधारभूत समाधान

T.B.C. : 28/15/ET-III

49

P.T.O.

अथवा

How many bit string of length eight start with a '1' bit or ends with the two bits '00' ?

(A) 150
(B) 32
(C) 128
(D) 160

39. In cluster sampling, the sampling variance of sample mean is :

(A) $\operatorname{Var}(\overline{\overline{y}}_{n}) = \frac{n - N}{nN} S_{b}^{2}$ (B) $\operatorname{Var}(\overline{\overline{y}}_{n}) = \frac{N - n}{Nn} S_{b}^{2}$ (C) $\operatorname{Var}(\overline{\overline{y}}_{n}) = \frac{N - n}{Nn} \overline{S}_{w}^{2}$ (D) $\operatorname{Var}(\overline{\overline{y}}_{n}) = \frac{N - n}{Nn} S^{2}$

Or

If f is defined on [0, 1] by :

600 - 20 March 19

40.

$$f(x) = \frac{1}{a}, \frac{1}{a+1} < x < \frac{1}{a}, a = 1, 2, 3, \dots,$$

then $\int_{0}^{1} f(x) dx$ is equal to :

(A) $\frac{\pi^2}{6}$ (B) $\frac{\pi^2}{6} - 1$ (C) $\pi^2 - 1$ (D) $\frac{\pi^2}{2} - 1$

(C) $\pi^2 - 1$ Let $F_i(t)$ be the failure time distribution for the *i*th component, i = 1, 2, ...,

n. Then the failure time distribution, F(t), for the series system is given by :

(A) $F(t) = 1 - \prod_{i=1}^{n} (1 - F_i(t))$ (B) $F(t) = \prod_{i=1}^{n} (1 - F_i(t))$ (C) $F(t) = 1 - \prod_{i=1}^{n} F_i(t)$ (D) $F(t) = \prod_{i=1}^{n} F_i(t)$ T.B.C. : 28/15/ET-III 50 लम्बाई आठ के कितना टुकड़ा डोरी '1' टुकड़े से आरम्भ होती है या दो टुकड़े '00' के साथ समाप्त होती है :

अथवा

(A) 150
(B) 32
(C) 128
(D) 160

39. क्लस्टर नमूना जांच में नमूना माध्य का नमूना जांच प्रसरण है :

(A) $\operatorname{Var}(\overline{\overline{y}}_{n}) = \frac{n-N}{nN} S_{b}^{2}$ (B) $\operatorname{Var}(\overline{\overline{y}}_{n}) = \frac{N-n}{Nn} S_{b}^{2}$ (C) $\operatorname{Var}(\overline{\overline{y}}_{n}) = \frac{N-n}{Nn} \overline{S}_{w}^{2}$ (D) $\operatorname{Var}(\overline{\overline{y}}_{n}) = \frac{N-n}{Nn} S^{2}$

अथवा

यदि [0, 1] पर f को :

$$f(x) = \frac{1}{a}, \frac{1}{a+1} < x < \frac{1}{a}, a = 1, 2, 3, \dots,$$

द्वारा परिभाषित किया जाता है तब $\int_{0}^{1} f(x) dx$ किसके बराबर है ?

(A)
$$\frac{\pi^2}{6}$$
 (B) $\frac{\pi^2}{6} - 1$

(C)
$$\pi^2 - 1$$
 (D) $\frac{\pi^2}{2} - 1$

40. मान लीजिए iवें अवयव के लिए क्षय काल वितरण F_i(t) है, i = 1, 2,, n तब श्रेणी तन्त्र के लिए क्षय काल वितरण F(t) को किसके द्वारा दर्शाया जाता है ?

(A)
$$\mathbf{F}(t) = 1 - \prod_{i=1}^{n} (1 - \mathbf{F}_{i}(t))$$
 (B) $\mathbf{F}(t) = \prod_{i=1}^{n} (1 - \mathbf{F}_{i}(t))$
(C) $\mathbf{F}(t) = 1 - \prod_{i=1}^{n} \mathbf{F}_{i}(t)$ (D) $\mathbf{F}(t) = \prod_{i=1}^{n} \mathbf{F}_{i}(t)$

T.B.C. : 28/15/ET-III

51

The integral equation corresponding to differential equation $\frac{dy}{dx} - y = 0$, y(0) = 1 is : (A) $y(x) = 1 + \int_{0}^{x} y(t) dt$ (B) $y(x) = 1 + x - \int_{0}^{x} \sin (x + t) y(t) dt$ (C) $y(x) = 2 + \int_{0}^{x} y(t) dt$ (D) $y(x) = 2 - \int_{0}^{x} y(t) dt$ 41. Which of the following is a control chart for variable ? (A) p-chart (B) C-chart (C) R-chart (D) d-chart

Or

The accuracy of estimates after confounding in sub-plots increases :

(A) for main-plot treatments

(B) for all sub-plot treatment

(C) for all sub-plot treatments except those which are confounded

(D) for n treatments

42. If T is a self adjoint operator on a real inner product space, then :

(A) the characteristic polynomial of T splits

(B) characteristic polynomial of T is irreducible

(C) all eigenvalues of T are same

(D) T has a complex eigenvalue

T.B.C. : 28/15/ET-III

Or

अवकलन समीकरण $\frac{dy}{dx} - y = 0$, y(0) = 1 से सम्बद्ध समाकलन समीकरण क्या है ?

(A)
$$y(x) = 1 + \int_{0}^{x} y(t) dt$$
 (B) $y(x) = 1 + x - \int_{0}^{x} \sin(x+t) y(t) dt$

(C)
$$y(x) = 2 + \int_{0}^{x} y(t)dt$$
 (D) $y(x) = 2 - \int_{0}^{x} y(t)dt$

41. निम्नलिखित में से चर के लिये नियन्त्रण चार्ट कौनसा है ?

- (A) p-चार्ट (B) C-चार्ट
- (C) R-चार्ट (D) d-चार्ट

अथवा

उपखण्डों में अस्तव्यस्तता के बाद अवकलन की परिशुद्धता क्यों बढ़ती है ?

- (A) मुख्य-प्लॉट प्रतिपादन के लिए
- (B) सभी उप-प्लॉट प्रतिपादन के लिए
 - (C) अस्तव्यस्त उप-प्लाट प्रतिपादन को छोड़कर सभी उप-प्लाट प्रतिपादन के लिए

53

P.T.O.

(D) n प्रतिपादन के लिए

42. वास्तविक आन्तरिक उत्पाद स्थान पर यदि T एक आसन्न प्रचालक है, तब :

- (A) T का विलक्षण बहुपद खंडित हो जाता है
- (B) T का विलक्षण बहुपद अखंडनीय है
- (C) T के सभी आइगन मान एकसमान हैं
- (D) T का एक जटिल आइगन मान है

T.B.C. : 28/15/ET-III

अथवा

A sequence of independent random variables $\{X_k\}$ with $Var(X_k) = \sigma_k^2$ is sai to follow weak law of large numbers if :

(A) $\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^n \sigma_k^2 = 0$ (B) $\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^n \sigma_k^2 = \infty$ (C) $\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^n \frac{1}{\sigma_k^2} = 0$ (D) $\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^n \frac{1}{\sigma_k^2} = \infty$

43. Consider the IVP :

$$\frac{dy}{dx} = xy^{1/3}, \ y(0) = 0, \ (x, \ y) \in \mathbf{R} \times \mathbf{R}$$

Then, which of the following is correct ?

- (A) The function $f(x, y) = xy^{1/3}$ does not satisfy a Lipschitz condition with respect to y in any neighbourhood of y = 0
- (B) There exists a unique solution for the IVP
- (C) There exists no solution for the IVP
- (D) None of the above

Or

Let Y_1 , Y_2 , Y_3 , Y_4 , Y_5 be a random sample from an exponential distribution with mean 2. If X = min (Y_1 , Y_2 , Y_3 , Y_4 , Y_5), then the value of P(X > 1) is :

- (A) $e^{-\frac{5}{2}}$ (B) e^{-2}
- (C) e^{-5} (D) e^{-1}

44. The equation in the set of integers $2x \equiv 3 \pmod{20}$ has :

- (A) a unique solution (B) no solution
- (C) infinite number of solutions (D) only 2 solutions

54

T.B.C. : 28/15/ET-III

Or

Var (X_k) = o^g वाले एक स्वतन्त्र यादृच्छिक चर {X_k} के अनुक्रम को, अधिक संख्याओं के कमजोर नियम का अनुसरण करने वाला कहा जाता है यदि :

(A)
$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^n \sigma_k^2 = 0$$
 (B) $\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^n \sigma_k^2 = \infty$
(C) $\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^n \frac{1}{\sigma_k^2} = 0$ (D) $\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^n \frac{1}{\sigma_k^2} = \infty$

43. निम्नलिखित IVP पर विचार कीजिए :

$$\frac{dy}{dx} = xy^{1/3}, \ y(0) = 0, \ (x, \ y) \in \mathbf{R} \times \mathbf{R}$$

तब निम्नलिखित में से कौनसा सही है ?

- (A) f'(x, y) = xy^{1/3} फलन, y = 0 के किसी सन्निकट में y के संदर्भ में एक लिपशिट्ज दशा को संतुष्ट नहीं करती
- (B) IVP के लिए एक अद्वितीय समाधान अस्तित्व में है
 - (C) IVP के लिए समाधान अस्तित्व के नहीं है
 - (D) उपर्युक्त में से कोई नहीं

अथवा

55

मान लीजिए माध्य 2 के साथ एक घातांकी वितरण से यादृच्छिक नमूने Y_1 , Y_2 , Y_3 , Y_4 , Y_5 है यदि X = min (Y_1 , Y_2 , Y_3 , Y_4 , Y_5), तब P(X > 1) का मान क्या है ?

- (A) $e^{-\frac{5}{2}}$ (B) e^{-2}
- (C) e^{-5} (D) $\cdot e^{-1}$

44. पूर्ण संख्या $2x \equiv 3 \pmod{20}$ के सेट में समीकरण का है ?

- (A) एक विलक्षण समाधान
 (B) समाधान नहीं है
- (C) समाधानों की अनन्त संख्या (D) केवल 2 समाधान

T.B.C. : 28/15/ET-III

अथवा

In the case of sampling with varying probabilities of selection and without replacement, an unbiased estimator t_n for population mean \overline{y}_N is :

(A)
$$t_n = \frac{1}{n} \sum_{i=1}^n \frac{y_i}{\pi_i}$$
 (B) $t_n = \frac{1}{N} \sum_{i=1}^n \frac{y_i}{\pi_i}$
(C) $t_n = \frac{1}{n} \sum_{i=1}^n \frac{\pi_i}{y_i}$ (D) $t_n = \frac{1}{N} \sum_{i=1}^n \pi_i y_i$

. where notations have their standard meaning.

45. A flow field is given by $\vec{q} = -x\hat{i} + y\hat{j}$. The flow is :

(A) Laminar

(C) Irrotational (D) Uniform

Or

If A – $W_p(n, \Sigma)$, then the distribution of the matrix G = HAH' (where H is any $k \times p$ matrix of rank $k \leq p$)) is :

(B) Rotational

- (A) $W_k(n-k, \Sigma)$ (B) $W_p(n-k, H\Sigma H')$
- (C) $W_k(n, H\Sigma H')$ (D) $W_k(n, H'\Sigma H)$
- 46. For a system characterised by the Lagrangian :

$$\mathbf{L} = \frac{1}{2} \left(\dot{x}^2 + \dot{y}^2 \right) - \frac{1}{2} w_0^2 (x^2 + y^2) + \alpha \dot{x} \dot{y}$$

what restriction should be imposed on α for the normal modes of vibrations ?

- (A) $\alpha > 0$ (B) $\alpha < 0$
- (C) $\alpha > 1$ (D) $\alpha \neq 1$

चयन और बिना विस्थापन की विभिन्न सम्भावनाओं वाले नमूने के विषय में माध्य $\overline{y}_{
m N}$ जनसंख्या के लिए निष्पक्ष आकलक t_n कौनसा है ?

(A)
$$t_n = \frac{1}{n} \sum_{i=1}^n \frac{y_i}{\pi_i}$$
(B) $t_n = \frac{1}{N} \sum_{i=1}^n \frac{y_i}{\pi_i}$ (C) $t_n = \frac{1}{n} \sum_{i=1}^n \frac{\pi_i}{y_i}$ (D) $t_n = \frac{1}{N} \sum_{i=1}^n \pi_i y_i$ जहाँ संकेतों का अपना मानक अर्थ है।(D) $t_n = \frac{1}{N} \sum_{i=1}^n \pi_i y_i$ एक बहाव क्षेत्र $\vec{q} = -x\hat{i} + y\hat{j}$ द्वारा दिया गया है। बहाव कैसा है ?(A) पटलीय(B) घूर्णीय(C) अघूर्णीय(D) एकसमानअथवायदि A - W_p(n, \Sigma), तब मैट्रिक्स G = HAH' (जहाँ $k(\leq p)$) श्रेणी काH है) का वितरण कौनसा है ?

(A) $W_k(n-k, \Sigma)$ (B) $W_p(n-k, H\Sigma H')$

(C) $W_k(n, H\Sigma H')$ (D) $W_k(n, H'\Sigma H)$

46. लाग्रांजियन L = ¹/₂(x² + y²) - ¹/₂w₀²(x² + y²) + αxy द्वारा विलक्षणकृत तन्त्र के लिए कम्पन को सामान्य प्रणाली के लिए α पर क्या प्रतिबन्ध लगाना चाहिए ?

(A) $\alpha > 0$ (B) $\alpha < 0$

(C) $\alpha > 1$ (D) $\alpha \neq 1$

T.B.C. : 28/15/ET-III

45.

P.T.O.

कोई $k \times p$ मैट्रिक्स

अथवा

Wishart distribution is the multivariate generalization of :

- (A) t-distribution (B) F-distribution
- (C) normal distribution (D) χ^2 -distribution
- 47. Let X and Y be topological spaces. Then the following statement is false:
 - (A) The product space X × Y is a Hausdorff space if and only if both X and Y are Hausdorff
 - (B) The product space X × Y is compact if and only if both X and Y are compact
 - (C) The product space X × Y is connected if and only if both X and Y are connected
 - (D) None of the above statements

Or

Let
$$\underline{\mathbf{X}} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_3 \end{pmatrix} \sim \mathbf{N}_3 \ (\mu, \Sigma)$$

with $\boldsymbol{\Sigma} = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

15

Which one of the following statements is true ?

- (A) X_1 and X_2 are independent
- (B) $\begin{pmatrix} X_1 \\ X_3 \end{pmatrix}$ and X_2 are independent (C) $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ and X_3 are independent (D) $\begin{pmatrix} X_1 \\ X_3 \end{pmatrix}$ has covariance matrix $\begin{pmatrix} 4 & 0 \\ 2 & 0 \end{pmatrix}$

T.B.C. : 28/15/ET-III

58

अथवा

विशार्ट वितरण, किसका बहुचर सामान्यीकरण है :

- (A) t-वितरण (B) F-वितरण
- (C) सामान्य वितरण (D) χ²-वितरण

47. मान लीजिए X और Y सास्थितिक स्थान हैं तब कौन-सा कथन असत्य है ?

- (A) उत्पाद स्थान X × Y एक हॉसडॉर्फ स्थान है यदि और केवल यदि X और Y दोनों हॉसडॉर्फ हैं
 - (B) उत्पाद स्थान X × Y सघन हैं यदि और केवल यदि X और Y सघन हैं
 - (C) उत्पाद स्थान X × Y संयोजित है यदि और केवल यदि X और Y दोनों संयोजित हैं
 - (D) उपर्युक्त में से कोई नहीं

अथवा

मान लीजिए
$$\underline{\mathbf{X}} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_3 \end{pmatrix} \sim \mathbf{N}_3 \ (\mu, \Sigma)$$

$$\boldsymbol{\Sigma} = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} \quad \overrightarrow{\mathbf{a}} \quad \overrightarrow{\mathbf{R}} \quad \overrightarrow{\mathbf{R}} \ \overrightarrow{\mathbf{R}} \ \overrightarrow{\mathbf{R}}$$

निम्नलिखित में से कौनसा कथन सत्य है ?

(A)
$$X_1$$
 और X_2 स्वतन्त्र है
(B) $\begin{pmatrix} X_1 \\ \\ \\ \end{pmatrix}$ और X_2 स्वतन्त्र है

(C)
$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$
 और X_3 स्वतन्त्र है
 $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ $\begin{pmatrix} 4 & 0 \end{pmatrix}$

(D) $\begin{pmatrix} 1 \\ X_3 \end{pmatrix}$ का सहसंयोजक मैट्रिक्स $\begin{pmatrix} 2 & 0 \end{pmatrix}$

T.B.C. : 28/15/ET-III

48. For a XYZ manufacturing firm, Rs. 80,000 per annum is the setup cost and the raw material and labour costs for manufacturing 1 unit is Rs. 65. Further, it is estimated that the relationship between number of units sold and selling price is given by :

D = 15000 - 60p,

where p is the selling price, $0 \le p \le 200$. What is the unit selling price to get maximum profit ?

(A)197.5·(B)177.5(C)157.5(D)127.5

Or

Let $X_{\alpha}(\alpha = 1, 2, ..., N)$ be N independent observations from $N_{p}(0, \Sigma)$ and let $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_{\alpha}$. Then the M.L. estimator of Σ is :

- (A) $\frac{1}{N} \sum_{\alpha=1}^{N} (X_{\alpha} \overline{X}) (X_{\alpha} \overline{X})'$
- (B) $\frac{1}{N-1}\sum_{\alpha=1}^{N} (X_{\alpha} \overline{X}) (X_{\alpha} \overline{X})'$
- (C) $\frac{1}{N} \sum_{\alpha=1}^{N} X_{\alpha} X_{\alpha}^{'}$
- (D) $\frac{1}{N-1}\sum_{\alpha=1}^{N}X_{\alpha}X_{\alpha}^{'}$
- 49. Which of the following relations is false ?
 - (A) $E = 1 + \Delta$ (B) $E^{-1} = 1 - \nabla$ (C) $E = (1 + \nabla)^{-1}$ (D) $E^{-1} = 1 + \nabla$

-

48. एक XYZ निर्माण कम्पनी के लिए स्थापना का मूल्य 80,000 रु. प्रति वार्षिक है और 1 इकाई के निर्माण के लिए कच्चे माल और मजदूरी का मूल्य 65 रु. है। यह आकलित है कि बेची गयी इकाइयों की संख्या और विक्रय मूल्य के बीच सम्बन्ध को नीचे दिया गया है :

D = 15000 - 60p,

जहाँ p विक्रय मूल्य है, 0 ≤ p ≤ 200। अधिकतम लाभ पाने के लिए इकाई विक्रय मूल्य क्या होगा ?

(A) 197.5
(B) 177.5
(C) 157.5
(D) 127.5

अथवा

मान लीजिए $X_{\alpha}(\alpha = 1, 2,, N)$, $N_{p}(0, \Sigma)$ का N स्वतन्त्र पर्यवेक्षण है। मान लीजिए कि $\overline{X} = \frac{1}{N} \sum_{\alpha=1}^{N} X_{\alpha}$, तब Σ का M.L. आकलक क्या है ?

- (A) $\frac{1}{N} \sum_{\alpha=1}^{N} (X_{\alpha} \overline{X}) (X_{\alpha} \overline{X})'$
- (B) $\frac{1}{N-1}\sum_{\alpha=1}^{N} (X_{\alpha} \overline{X}) (X_{\alpha} \overline{X})'$
- (C) $\frac{1}{N} \sum_{\alpha=1}^{N} X_{\alpha} X_{\alpha}^{'}$

(D)
$$\frac{1}{N-1}\sum_{\alpha=1}^{N} X_{\alpha} X_{\alpha}'$$

- 49. निम्नलिखित में कौनसा सम्बन्ध असत्य है ?
 - (A) $E = 1 + \Delta$ (B) $E^{-1} = 1 \nabla$
 - (C) $\mathbf{E} = (1 + \nabla)^{-1}$ (D) $\mathbf{E}^{-1} = 1 + \nabla$

T.B.C. : 28/15/ET-III

In case of sampling from $N_{p}(\mu, \Sigma)$, Σ being unknown, the likelihood ratio test of $H_{0}: \mu = \mu_{0}$ (specified) is a function of :

Or

- (A) Student's t (B) Chi-square
- (C) Sample mean vector \overline{X} only (D) Hotelling's T^2
- 50. Given the integral equation :

$$\int_{0}^{x} e^{x-t} y(t) dt = e^x + x + t,$$

then :

- (A) y(t) = 2 t is the solution (B) y(t) = t 2 is the solution
- (C) y(t) = t + 2 is the solution (D) y(t) = t 1 is the solution

Or

A sequence of independent random variables $\{X_k\}$ is said to obey the strong law of large numbers of :

(A) $\sum_{k=1}^{\infty} \frac{\operatorname{Var}(x_k)}{k^2} < \infty$ (B) $\sum_{k=1}^{\infty} \frac{\operatorname{Var}(x_k)}{k^2} = \infty$ (C) $\sum_{k=1}^{\infty} \frac{\operatorname{Var}(x_k)}{k} < \infty$ (D) $\sum_{k=1}^{\infty} \frac{\operatorname{Var}(x_k)}{k} = \infty$

51. If f is defined on [0, 1] by :

$$f(x) = 2ax, \frac{1}{a+1} < x < \frac{1}{a}, a = 1, 2, 3, \dots,$$

then $\int_{0}^{1} f(x) dx$ equals : (A) $\frac{\pi^{2}}{2}$ (B) $\frac{\pi^{2}}{6}$ (C) π^{2} (D) $\frac{\pi}{6}$

T.B.C. : 28/15/ET-III

62

अथवा

 $N_p(\mu, \Sigma)$ से नमूने जांच के विषय में Σ अज्ञात है, $H_0: \mu = \mu_0$ (विशेषीकृत) का सन्निकट दर परीक्षण किसका फलन है ? (A) विद्यार्थी का t (स्टूडेन्ट परीक्षण) (B) काई-वर्ग

(C) केवल नमूना माध्य वेक्टर $ar{X}$ (D) होटेलिंग का T^2

50. समाकलन समीकरण

$$\int_0^x e^{x-t} y(t) dt = e^x + x + t,$$

दी गयी है तब :

(A)	y(t) = 2 - t	समाधान	袁	(B)	y(t)=t-2	समाधान	袁
(C)	$\mathbf{v}(t) = t + 2$	समाधान	te	(D)	y(t) = t - 1	समाधान	吉

अधवा

स्वतन्त्र यादृच्छिक चर (X_k) का एक अनुक्रम अधिक संख्या के कठोर नियम का अनुसरण करते हुए कहा जाता है यदि :

(A)
$$\sum_{k=1}^{\infty} \frac{\operatorname{Var}(x_k)}{k^2} < \infty$$
(B)
$$\sum_{k=1}^{\infty} \frac{\operatorname{Var}(x_k)}{k^2} = \infty$$
(C)
$$\sum_{k=1}^{\infty} \frac{\operatorname{Var}(x_k)}{k} < \infty$$
(D)
$$\sum_{k=1}^{\infty} \frac{\operatorname{Var}(x_k)}{k} = \infty$$

51. यदि f को [0, 1] पर निम्नलिखित द्वारा परिभाषित किया जाता है :

$$f(x) = 2ax, \frac{1}{a+1} < x < \frac{1}{a}, a = 1, 2, 3, \dots,$$

तब $\int_{0}^{1} f(x) dx$ किसके बराबर है ? (A) $\frac{\pi^{2}}{2}$ (B) $\frac{\pi^{2}}{6}$ (C) π^{2} (D) $\frac{\pi}{6}$

T.B.C. : 28/15/ET-III

63

A study reveals that the correlation coefficient between the test scores of the engineering admission test and the percentage of marks of the qualifying examination for admission test of a random sample of 1000 students from Kerala is 0.98. On the basis of this analysis result which one of the following decision is *correct* ?

- (A) Admission tests are essential for engineering admission
- (B) Based on the sample evidence the engineering entrance tests are not essential
- (C) For the entrance test, qualifying examination performance does not have any influence
- (D) Based on the sample evidence there is no linear relationship between the admission test scores and the percentage of marks of the qualifying examination
- 52. If $ac \equiv bc \pmod{m}$ and d = (m, c), then :
 - (A) $a \equiv b \left(\mod \frac{m}{d} \right)$ (B) $a \equiv m \pmod{b}$ (C) $a \equiv m \left(\mod \frac{b}{a} \right)$ (D) $a \equiv d \pmod{m}$
 - Or

A sequence of i.i.d. random variables $\{X_k\}$ obeys the strong law of large number if and only if :

64

- (A) $E(X_k) < \infty$ (B) $E(X_k) = \infty$
- (C) $Var(X_k) = \infty$ (D) None of these

एक अध्ययन से पता चला कि केरल के 1000 विद्यार्थियों के यादृच्छिक नमूने का प्रवेश परीक्षा के लिए योग्यता परीक्षा के प्राप्तांकों की प्रतिशतता और अभियान्त्रिकी प्रवेश परीक्षा की परीक्षा प्राप्तांकों के बीच सहसम्बन्ध गुणांक 0.98 है। परिणाम विश्लेषण के आधार पर निम्नलिखित में से कौनसा निर्णय **सही** है ?

- (A) अभियान्त्रिकी दाखिला के लिए प्रवेश परीक्षा जरूरी है
- (B) नमूना प्रमाण के आधार पर अभियान्त्रिकी प्रवेश परीक्षाएँ जरूरी नहीं हैं
- (C) प्रवेश परीक्षा के लिए योग्यता परीक्षा निष्पादन का कोई प्रभाव नहीं है
- (D) नमूना प्रमाण के आधार पर दाखिला परीक्षा प्राप्तांकों और योग्यता परीक्षा के अंकों की प्रतिशतता के बीच कोई रेखीय सम्बन्ध नहीं है

52. यदि $ac \equiv bc \pmod{m}$ और d = (m, c) तब :

(A) $a \equiv b \left(\mod \frac{m}{d} \right)$ (B) $a \equiv m \pmod{b}$ (C) $a \equiv m \left(\mod \frac{b}{a} \right)$ (D) $a \equiv d \pmod{m}$

अथवा

65

i.i.d. यादृच्छिक चरों {X_k} का एक अनुक्रम अधिक संख्या के कठोर नियम का अनुसरण करता है यदि और केवल यदि :

(A) $E(X_k) < \infty$ (B) $E(X_k) = \infty$

(C) $Var(X_k) = \infty$ (D) इनमें से कोई नहीं

T.B.C. : 28/15/ET-III

53. Which of the following statements is false ?

(A) A compact subset of a metric space is bounded

(B) A compact subset of a metric space is bounded as well as closed

(C) A compact metric space is not sequentially compact

(D) A compact metric space is sequentially compact

Ог

Let X₁, X₂,, X_n be a sample from N(μ , 1). To test H₀ : $\mu \leq 0$ against

 $H_1: \mu > 0$, the test used is to reject H_0 if $\sum_{i=1}^{n} X_i > c$. Then this test

is :

(C)

1

(A) MP (B) Only UMP

(C) UMP unbiased (D) Nothing can be said

54. Let V be the vector space of all 2×2 matrices over the field **R** of real numbers, then the dimension of V is :

- (A) 2 (B) 4

(D) 3

The column ${}_{n}L_{x}$ in an abridged life table represents :

- (A) number of persons alive between ages x and x + n
- (B) person-years lived by the Cohort during the age interval (x, x + n)
- (C) number of deaths during the age interval (x, x + n)
- (D) probability of dying in the age interval (x, x + n)

53. निम्नलिखित में से कौनसा कथन असत्य है ?

(A) मैट्रिक स्थान का एक सघन उपसेट परिमित होता है

(B) मैट्रिक स्थान का एक सघन उपसेट परिमित और बन्द होता है

(C) एक सघन मैट्रिक स्थान अनुक्रमिक रूप में सघन नहीं होता है

(D) एक सघन मैट्रिक स्थान अनुक्रमिक रूप में सघन होता है

अथवा

मान लीजिए N(µ, 1) से नमूने X₁, X₂,, X_n है। H₁ : $\mu > 0$ के विरुद्ध H₀ : $\mu \le 0$ का परीक्षण करने के लिए प्रयुक्त परीक्षण अस्वीकृत का H₀ है यदि $\sum_{i=1}^{n} X_i > c$ । तब यह परीक्षण कैसा है ?

(A) MP (B) 하려면 UMP

(C) UMP निष्पक्षी
 (D) कुछ नहीं कहा जा सकता
 मान लीजिए, V, वास्तविक संख्याओं के R क्षेत्र के ऊपर सभी 2 × 2 मैट्रिक्स का वेक्टर स्थान
 है। तब V का आयाम क्या है ?

(A)	2	8	-	(B)	4	
	1			(D)	3	

अथवा

एक संक्षिप्त जीवन तालिका में स्तम्भ ${}_{n}L_{x}$ का प्रदर्शित करता है : (A) x और x + n की बीच की आयु वाले जीवित व्यक्तियों की संख्या (B) आयु अन्तराल (x, x + n) के दौरान सहगण द्वारा जीवित रहे व्यक्ति-वर्ष (C) आयु अन्तराल (x, x + n) के दौरान मरने वालों की संख्या (D) आयु अन्तराल (x, x + n) में मर रहे व्यक्तियों की संभावना

T.B.C. : 28/15/ET-III

54.

55. Adjacency matrix of graph of k_4 is :

	ſo	1	1	1]	÷.,	5)		[1	1	1	0	
	1	0	1	1				1	1	0	1	
(A)	1	1	0	1			(B)	1	0	1	1	
	1	1	1	o		3		0	1	1	1	
	[1	0	0	0]				[1	0	1	1	
	0	1	0	0			1226/	1	1	0	1	
(C)	0	0	1	0			(D)	1	1	1	0	
	0	0	0	1				0	1	1	ı]	
121	251											

Or

Let P be the class of all absolutely continuous distribution functions and X_1, X_2, \ldots, X_n be a sample of size n. To estimate $g(F) = P_F(X_1 > C)$, where C is a fixed constant, define :

 $\mathbf{Y}_{i} = \begin{cases} 1, & \mathbf{X}_{i} > \mathbf{C} \\ & & \\ 0, & \mathbf{X}_{i} \leq \mathbf{C}, \end{cases} \quad i = 1, 2, \dots, n.$

Then :

- (A) $\frac{1}{n} \sum_{i=1}^{n} Y_i$ is the UMVUE of g(F)
 - (B) $\frac{1}{n}\sum_{i=1}^{n}(1-Y_i)$ is the UMVUE of $g(\mathbf{F})$
 - (C) $\frac{1}{n}\sum_{i=1}^{n}Y_{i}^{2}$ is the UMVUE of g(F)
 - (D) No UMVUE of g(F) exists

		ſo	1	1	1]		1	1	1	0
		1	0	1	1		1	1	0	1
(A	Ŋ.	1	1	0	1	(B)	1	0	1	1
		1	1	1	o		o	1	1	1
		[1	0	0	0]		[1	0	1	1
	(C)	0	1	0	0		1	1	0	1
((0	0	1	0	(D)	1	1	1	0
		0	0	0	1		lo	1	1	1

अथबा

मान लीजिए P सभी शुद्ध सतत् वितरण फलन का वर्ग है और X₁, X₂,, X_n आमाप n का एक नमूना है।

 $g(\mathbf{F}) = \mathbf{P}_{\mathbf{F}}(\mathbf{X}_1 > \mathbf{C})$ के आकलन के लिए, जहाँ \mathbf{C} एक स्थिर अचर है,

$$\mathbf{Y}_{i} = \begin{cases} 1, & \mathbf{X}_{i} > \mathbf{C} \\ & & i = 1, 2, \dots, n \\ 0, & \mathbf{X}_{i} \le \mathbf{C}, \end{cases}$$

की परिभाषा दीजिए तब :

- (A) $\frac{1}{n} \sum_{i=1}^{n} Y_{i}, g(F)$ का UMVUE है (B) $\frac{1}{n} \sum_{i=1}^{n} (1 - Y_{i}), g(F)$ का UMVUE है
- (C) $\frac{1}{n}\sum_{i=1}^{n}Y_{i}^{2}$, g(F) 新 UMVUE 素
- (D) g(F) का कोई UMVUE अस्तित्व में नहीं है

T.B.C. : 28/15/ET-III

The characteristic curve of 56.

$$2yu_x + (2x + y^2)u_y = 0$$

passing through (0, 0) is :

(B) $y^2 = 2(e^x - x + 1)$ (A) $y^2 = 2(e^x + x - 1)$ (D) $y^2 = 2(e^x + x + 1)$ (C) $y^2 = 2(e^x - x - 1)$

Or

If k effects are confounded in a 2^n factorial experiment to have 2^k blocks of size 2^{n-k} units, the number of automatically confounded effects is :

- (B) $k^2 k 1$ (A) $2^k - k$
- (D) none of these (C) $2^k - k - 1$

Green's function for the boundary value problem y'' = 0, y(0) = y(1) = 0 is given 57. by :

70

(A) $G(x, t) = x(1 - t), 0 \le x \le t$ $G(x, t) = t(1 - x), t < x \le 1$ (B) $G(x, t) = t(1 - x), 0 \le x \le t$ $G(x, t) = x(1 - t), t < x \le 1$ (C) $G(x, t) = x^2(1-t), \ 0 \le x \le t$

$$G(x, t) = x(1 - t^2), t < x \le 1$$

(D)
$$G(x, t) = x(1 - t^2), 0 \le x \le t$$

$$G(x, t) = x^2(1 - t), t < x \le 1$$

T.B.C. : 28/15/ET--111

 56.
 (0, 0) से होकर गुजरने वाले $2yu_x + (2x + y^2)u_y = 0$ का विलक्षण वक्र कौनसा है ?

 (A) $y^2 = 2(e^x + x - 1)$ (B) $y^2 = 2(e^x - x + 1)$

 (C) $y^2 = 2(e^x - x - 1)$ (D) $y^2 = 2(e^x + x + 1)$

 अथवा

आमाप 2^{n-k} इकाई के 2^k खण्ड पाने के लिए एक 2ⁿ क्रमगुणित प्रयोग में k प्रभाव भौचक करने वाला है। स्वत: अव्यवस्थित प्रभावों की संख्या क्या है :

- (A) $2^k k$ (B) $k^2 k 1$
- (C) $2^k k 1$ (D) इनमें से कोई नहीं

57. परिसीमा कपाट प्रश्न y'' = 0, y(0) = y(1) = 0 के लिए ग्रीन का फलन क्या है ?

71

(A) $G(x, t) = x(1 - t), 0 \le x \le t$

 $G(x, t) = t(1 - x), t < x \le 1$

- (B) $G(x, t) = t(1 x), 0 \le x \le t$
 - $G(x, t) = x(1 t), t < x \le 1$
- (C) $G(x, t) = x^2(1 t), \ 0 \le x \le t$
 - $G(x, t) = x(1 t^2), t < x \le 1$
- (D) $G(x, t) = x(1 t^2), 0 \le x \le t$

 $\mathbf{G}(x, t) = x^2(1-t), \ t < x \le 1$

T.B.C. : 28/15/ET-III

If interaction AB is confounded in a 2^3 factorial experiment, the entries of two blocks in a replicate will be :

- (A) Block 1 : b, ac, bc, a
 Block 2 : (1), ab, c, abc
- (B) Block 1 : (1), ab, a, b
 Block 2 : abc, c, bc, ac
- (C) Block 1 : (1), ab, ac, bc
 Block 2 : abc, a, b, c
- (D) Block 1 : abc, bc, ac, c
 Block 2 : ab, a, b, (1)
- 58. Let G be a group of order 225, then which of the following is not correct ?
 - (A) There exists exactly one 5-sylow subgroup of G
 - (B) Group given in (A) is normal in G
 - (C) There exists exactly three 3-sylow subgroups of G
 - (D) 3-sylow subgroup of G is abelian

Or

The purpose of safety stock is to :

- (A) adapt to uncertain demand
- (B) adapt to uncertain lead time
- (C) adapt to uncertain demand during lead time
- (D) none of the above
एक क्रमगुणित 2³ प्रयोग में यदि AB अस्तव्यस्त होता है, एक प्रतिकृति में, दो खण्डों का प्रवेश कैसा होगा ?

- (A) Block 1: b, ac, bc, a
 - Block 2 : (1), ab, c, abc
- (B) Block 1 : (1), ab, a, b
 Block 2 : abc, c, bc, ac
- (C) Block 1 : (1), ab, ac, bc
 Block 2 : abc, a, b, c
- (D) Block 1 : abc, bc, ac, c

Block 2: ab, a, b, (1)

58. मान लीजिए अनुक्रम 225 का एक समूह G है, तब निम्नलिखित में से कौनसा एक सही नहीं है ?

- (A) G का सही रूप में एक 5-sylow (सिलो) उपसमूह अस्तित्व में रहता है
- (B) (A) में दिया समूह G में सामान्य है
- (C) G के सही रूप में तीन 3-sylow (सिलो) उपसमूह अस्तित्व में है
- (D) G का 3-sylow (सिलो) अबेलियन है

अथवा

73

P.T.O.

- सुरक्षा भण्डार का प्रयोजन क्या है ?
- (A) अनिश्चित मांग के अनुकूल होना
- (B) अनिश्चित अग्रता समय के अनुकूल होना
- (C) अग्रता समय के दौरान अनिश्चित मांग के अनुकूल होना
- (D) उपर्युक्त में से कोई नहीं

T.B.C. : 28/15/ET-III

अथवा

59. Let \overline{X} and A denote, respectively, the sample mean vector and the Wishart matrix obtained from a random sample $X_{\alpha}(\alpha = 1, 2,, N)$ drawn from $N_{p}(\mu, \Sigma)$, and let :

$$\mathbf{Y} = \mathbf{N}(\mathbf{\bar{X}} - \boldsymbol{\mu})' \mathbf{A}^{-1}(\mathbf{\bar{X}} - \boldsymbol{\mu}).$$

Then $\frac{(N-p)}{p}$. Y is distributed as :

- (A) non-central $\chi_p^2(N \mu' \Sigma^{-1} \mu)$ (B) central χ_p^2
- (C) non-central $F_{p, N-p}(N\mu' \Sigma^{-1}\mu)$ (D) central $F_{p, N-p}$

Or

The bivariate random variable (x, y) has the joint density function :

 $f(x, y) = \begin{cases} xe^{-x(1+y)}, \text{ for } x > 0, y > 0\\ 0, \text{ elsewhere} \end{cases}$

The regression model of y on x, in this case is given by :

- (A) $Y_{\text{estimate}} = a + bx$
- (B) $Y_{\text{estimate}} = \frac{1}{r^2}$
- (C) mean of y for given x is equal to $\alpha + \beta x$

(D) mean of y for given x is equal to $\frac{1}{x}$ T.B.C. : 28/15/ET—III 74 59. मान लीजिए X = 3 और A क्रमश:, नमूना माध्य वेक्टर और विशार्ट मैट्रिक्स को निर्दिष्ट करते हैं जो N_p(μ , Σ) से अवतरित किये गये एक यादृच्छिक नमूना $X_{\alpha}(\alpha = 1, 2,, N)$ से प्राप्त होते हैं और मान लीजिए :

$$\mathbf{Y} = \mathbf{N}(\mathbf{\bar{X}} - \boldsymbol{\mu})' \mathbf{A}^{-1}(\mathbf{\bar{X}} - \boldsymbol{\mu})$$

तब $\frac{(N-p)}{p}$.Y कैंसे वितरित है :

(A) $\eta_{\tau-abr} = \chi_p^2 (N \mu' \Sigma^{-1} \mu)$ (B) $abr} = \chi_p^2 \chi_p^2$

(C) गैर-केन्द्रीय $F_{p, N-p}(N \mu' \Sigma^{-1} \mu)$ (D) केन्द्रीय $F_{p, N-p}$

अधवा

एक द्विचर यादृच्छिक चर (x, y) का संयुक्त घनत्व फलन :

$$f(x, y) = \begin{cases} xe^{-x(1+y)}, & x > 0, y > 0 के लिए\\ 0, & अन्यत्र \end{cases}$$

इस विषय में x पर y का प्रतिगमन मॉडल कैसे दिया जाता है ?

- (A) $Y_{31136} = a + bx$
- (B) $Y_{3136} = \frac{1}{x^2}$

(C) दिये गये x के लिए y का माध्य α + βx के बराबर

(D) दिये गये x के लिए y का माध्य $\frac{1}{x}$ के बराबर

T.B.C. : 28/15/ET—III

If f is a multiplicative arithmetic function and $g(n) = \sum_{n} f(d)$, then : 60.

- g(n) is multiplicative arithmetic function (A)
- $g(mn) \neq g(m)g(n)$ where m and n are two coprime integers (B)
- g(n) is not multiplicative arithmetic function (C)
- none of the above (D)

Or

Consider a series system having 'n' components. Let the failure rate of each component be constant, λ_i , i = 1, 2, ..., n, then the system failure rate is given by :

(A)
$$\sum_{i=1}^{n} \lambda_i$$

(B) $\sum_{i=1}^{n} \lambda_i t$
(C) $e^{-\sum_{i=1}^{n} \lambda_i}$
(D) $e^{-\sum_{i=1}^{n} \lambda_i t}$

Let PID, ED, UFD denote the set of all principal ideal domains, Euclidean 61. domains, unique factorization domains, respectively, then :

- (B) $PID \subset ED \subset UFD$ (A) $PID \subset UFD \subset ED$
- (C) $ED \subset PID \subset UFD$

(C)

Or

76

Let X ~ b(n, p) and the loss function be $L(p, d(x)) = [p - d(X)]^2$. Let $\pi(p) = 1$ for 0 be the a priori pdf of p. Then the Bayes estimate ofp is :

(D) UFD \subset ED \subset PID

(B) $d^*(\mathbf{X}) = \frac{\mathbf{X}}{n+2}$ (A) $d^*(\mathbf{X}) = \frac{\mathbf{X}}{n}$ (D) $d^*(X) = \frac{X+1}{n+2}$ (C) $d^*(X) = \frac{X+1}{n+1}$

- 60. यदि f एक गुणक अंकगणित फलन है तथा $g(n) = \sum_{d|n} f(d)$, तब :
 - (A) g(n) एक गुणक अंकगणित फलन है
 - (B) $g(mn) \neq g(m)g(n)$ जहाँ m और n दो कोप्राइम पूर्णांक हैं
 - (C) g(n) एक गुणक अंकगणित फलन नहीं है
 - (D) उपर्युक्त में से कोई नहीं

अथवा

'n' अवयव वाले एक श्रेणी तन्त्र पर विचार कीजिए। मान लीजिए कि प्रत्येक अवयव की क्षय दर स्थिर $\lambda_i, i=1,2,....,n$, तब तन्त्र क्षय दर को कैसे दिया जा सकता है ?

- (A) $\sum_{i=1}^{n} \lambda_i$ (B) $\sum_{i=1}^{n} \lambda_i t$
- (C) $e^{-\sum_{i=1}^{n}\lambda_{i}}$ (D) $e^{-\sum_{i=1}^{n}\lambda_{i}t}$

61. मान लीजिए PID, ED, UFD क्रमश: सभी प्रमुख आदर्श डोमेनों, यूक्लिडियन डोमेनों, विलक्षण गुणनखण्ड डोमेनों की निर्दिष्ट करता है। तब :

(A) $PID \subset UFD \subset ED$ (B) $PID \subset ED \subset UFD$ (C) $ED \subset PID \subseteq UFD$ (D) $UFD \subset ED \subset PID$

अथवा

मान लीजिए X ~ b(n, p) और क्षय फलन $L(p, d(x)) = [p - d(X)]^2$ है। मान लीजिए $0 के लिए <math>\pi(p) = 1$, p का एक पूर्ववर्ती p.d.f. है तब p का बेयस आकलन क्या होगा ?

(A) $d^{*}(X) = \frac{X}{n}$ (B) $d^{*}(X) = \frac{X}{n+2}$ (C) $d^{*}(X) = \frac{X+1}{n+1}$ (D) $d^{*}(X) = \frac{X+1}{n+2}$

T.B.C. : 28/15/ET-III

62. A real quadratic form in three variables x_1 , x_2 , x_3 is equivalent to diagonal form $-(x_1^2 + x_2^2 + x_3^2)$. Then, the quadratic form is :

- (A) positive definite (B) negative definite
- (C) semi-positive definite (D) semi-negative definite

Or

Consider a Markov chain with the following transition probabilistic matrix :

	1	2	3	4
1	$\frac{1}{3}$	$\frac{2}{3}$	0	0
2	1	0	0	0
3	$\frac{1}{2}$	0	$\frac{1}{2}$	0
4	0	0	$\frac{1}{2}$	$\frac{1}{2}$

Choose the correct answer regarding the state of the Markov chain :

- (A) State 1 and 3 recurrent,
 State 2 and 4 transient
- (B) State 1 and 2 recurrent, State 3 and 4 transient
- (C) State 2 and 4 recurrent, State 1 and 3 transient
- (D) State 3 and 4 recurrent, State 1 and 2 transient

T.B.C. : 28/15/ET-III

78

62. तीन चरों x_1, x_2, x_3 में एक वास्तविक द्विधाती रूप, द्विकोणीय रूप $-(x_1^2 + x_2^2 + x_3^2)$ के बराबर है। तब द्विधाती रूप कैसा है ?

- (A) धनात्मक सुनिश्चित(B) ऋणात्मक सुनिश्चित
- (C) अर्द्ध-धनात्मक सुनिश्चित (D) अर्द्ध-ऋणात्मक सुनिश्चित

अथवा

निम्नलिखित संक्रमण संभाव्य मैट्रिक्स वाले मार्कोव शृंखला पर विचार कीजिए :

	1	2	3	4
1	$\begin{bmatrix} 1\\ 3 \end{bmatrix}$	$\frac{2}{3}$	0	0
2	1	0	0	0
3	$\frac{1}{2}$	0	$\frac{1}{2}$	0
4	0	0	$\frac{1}{2}$	$\frac{1}{2}$

मार्कीव शृंखला की अवस्था के विषय में सही उत्तर का चयन कीजिए :

(A) अवस्था 1 और 3 आवर्ती

अवस्था 2 और 4 अल्पकालिक

- (B) अवस्था 1 और 2 आवर्ती
- अवस्था 3 और 4 अल्पकालिक
- (C) अवस्था 2 और 4 आवर्ती अवस्था 1 और 3 अल्पकालिक
- (D) अवस्था 3 और 4 आवर्ती
 - अवस्था 1 और 2 अल्पकालिक

T.B.C. : 28/15/ET-III

63. An example of stable equilibrium is :

(A) a ball on the ground

11

- (B) a book lying flat on the table
- (C) a pendulum in the rest position
- (D) a glass of water lying on a table

Or

With usual notations, which one of the following statements is not correct for k < p ?

- (A) $T_p^2 = T_k^2 + n \left(\underline{\underline{Y}}^{(2)} \underline{B} \underline{\underline{Y}}^{(1)} \right)' \underline{A}_{22,1}^{-1} \left(\underline{\underline{Y}}^{(2)} \underline{B} \underline{\underline{Y}}^{(1)} \right)$
- (B) $\lambda_p^2 = \lambda_h^2 + \left(\mu^{(2)} \beta \mu^{(1)}\right)' \Sigma_{22,1}^{-1} \left(\mu^{(2)} \beta \mu^{(1)}\right)$
- (C) $T_p^2 < T_k^2$

(D) None of the above

64. Equation in which an unknown function appears under the integral sign is called :

- (A) Linear differential equation
- (B) Linear integral equation
- (C) Partial differential equation
- (D) Gauss integral equation

Or

R-charts measure changes in :

- (A) central tendency
- (B) degree of variation
- (C) number of defects per production lot
- (D) natural variations

T.B.C. : 28/15/ET-III

80

- 63. स्थिर साम्यावस्था का उदाहरण कौनसा है ?
 - (A) मैदान पर एक गेंद
 - (B) मेज पर सपाट पड़ी एक किताब
 - (C) ठहरी स्थिति में एक दोलक
 - (D) मेज पर पड़ा पानी का एक गिलास

अथवा

सामान्य संकेतों के साथ, k < p के लिए निम्नलिखित में से कौनसा कथन सही नहीं है ?

(A)
$$\mathbf{T}_{p}^{2} = \mathbf{T}_{k}^{2} + n \left(\mathbf{Y}^{(2)} - \mathbf{B} \, \mathbf{Y}^{(1)} \right)' \, \mathbf{A}_{221}^{-1} \left(\mathbf{Y}^{(2)} - \mathbf{B} \, \mathbf{Y}^{(1)} \right)$$

(B)
$$\lambda_p^2 = \lambda_k^2 + \left(\mu^{(2)} - \beta \mu^{(1)}\right) \Sigma_{22,1}^{-1} \left(\mu^{(2)} - \beta \mu^{(1)}\right)$$

- (C) $T_p^2 < T_k^2$
- (D) उपर्युक्त में से कोई नहीं

64. एक समीकरण जिसमें एक अज्ञात फलन, समाकलन संकेत के अन्तर्गत प्रकट होता है, वह क्या कहलाता है ?

- (A) रैखिक अवकल समीकरण
- (B) रैखिक समाकलन समीकरण
- (C) आंशिक अवकल समीकरण
- (D) गौस समाकलन समीकरण

अथवा

R-चार्ट अपवर्तक किसमें बदलता है ?

- (A) केन्द्रीय प्रवृत्ति
- (B) विभिन्नता की कोटि
- (C) प्रति उत्पाद खेप दौषों की संख्या
- (D) प्राकृतिक विभिन्नतार्ये

T.B.C. : 28/15/ET-III

65. The equation $u_t = C^2 u_{xx}$ is classified as :

(A) Elliptic

(C) Parabolic

(B) Hyperbolic

(D) None of these

Or

Non-sampling errors occur in :

(A) sample survey (B) complete enumeration

(C) both in (A) and (B) (D) systematic sampling

66. If z = x + iy, then the Jacobian of the transformation :

 $f(z) = z^2$

is given by :

(A) $2x^2 + 2y^2$ (B) $2x^2 - 2y^2$ (C) $4x^2 - 4y^2$ (D) $4x^2 + 4y^2$

Or

A split block experiment is conducted with 5 levels of irrigation (I) and 4 levels of an insecticide (M) for foliar spray. The experiment contained 3 replications. The error degrees of freedom for the interaction effect is :

(A) 40 (B) 32

(C) 30 (D) 24

67. In the control chart for attributes, C-chart is applicable to :

(A) Number of defects per unit

(B) Number of defects in a sample

(C) Number of defectives per unit

(D) Number of defectives in a sample

65.	समीकरण $u_t = \mathrm{C}^2 u_{\mathrm{xx}}$ को कैसे वर्गीकृत किया	जा सकता है ?
		B) अतिपरवलयिक
	(C) परवलयिक (D) इनमें से कोई नहीं
	अथवा	
	गैर-नमूना जांच त्रुटियौँ किसमें होती हैं ?	
	(A) नमूना सर्वेक्षण में ((B) पूर्ण गणना में
	(C) (A) और (B) दोनों में	(D) सुव्यवस्थित नमूना जांच में
66.	यदि $z = x + iy$ है, तब जैकोबियन परिवर्तन	$f(z) = z^2$ को कैसे दिया जाता है ?
		(B) $2x^2 - 2y^2$

(C) $4x^2 - 4y^2$ (D) $4x^2 + 4y^2$

अथवा

पत्तियों पर छिड़काव के लिए 5 स्तरों की सिंचाई (I) और 4 स्तरों के एक कीटनाशी के साथ एक विभक्त खण्ड प्रयोग किया। परस्पर क्रिया प्रभाव के लिए स्वच्छन्दता की त्रुटि कोटियाँ हैं :

(A) 40 (B) 32

(C) 30 (D) 24

67. गुणों के लिए नियन्त्रण चार्ट में, C-चार्ट किसके लिए लागू होगा ?

(A) प्रति इकाई दोषों की संख्या

(B) एक नमूने में दोषों की संख्या

(C) प्रति इकाई दोषपूर्णों की संख्या

(D) एक नमूने में दोषपूर्णों की संख्या

T.B.C. : 28/15/ET-III

83

If a sample of size 10 is taken from a population of size 100, then the efficiency of SRSWOR with respect of SRSWR is :

(A) $\frac{11}{10}$ (B) $\frac{1}{11}$ (C) 11 (D) $\frac{10}{11}$

68. If S and T are two ideals of a ring R, then :

(A) $\frac{S+T}{S} \equiv \frac{S}{S \cap T}$ (B) $\frac{S+T}{S} \equiv \frac{T}{S \cap T}$ (C) $\frac{S+T}{S} \equiv \frac{S}{S \cap T}$ (D) $\frac{S+T}{S} \equiv \frac{T}{S \cup T}$

Or ,

If $X_{(r)}$ is the *r*th order statistic in a random sample of size *n* from a distribution with c.d.f. F(x) which is continuous, then $F(X_{(r)})$ is the *r*th order statistic in a random sample of size *n* from the :

(A) Uniform distribution over (-1, +1)

(B) Uniform distribution over (0, 1)

(C) Normal distribution

(D) Exponential distribution

69. Which of the following statements is false ?

(A) A totally bounded complete metric space is sequentially compact

(B) A totally bounded metric space is separable

(C) A sequentially compact metric space is totally bounded but not complete

(D) A sequentially compact metric space is totally bounded and complete

84

अथवा

यदि एक 10 आमाप का नमूना, 100 आमाप की एक जनसंख्या से लिया जाता है तब SRSWOR के विषय में SRSWR की दक्षता क्या है ?

(A) $\frac{11}{10}$ (B) $\frac{1}{11}$ (C) 11 (D) $\frac{10}{11}$

68. यदि S और T, एक वलय R के दो अभीष्ट हैं, तब :

(A) $\frac{S+T}{S} \equiv \frac{S}{S \cap T}$ (B) $\frac{S+T}{S} \equiv \frac{T}{S \cap T}$ (C) $\frac{S+T}{S} \equiv \frac{S}{S \cap T}$ (D) $\frac{S+T}{S} \equiv \frac{T}{S \cup T}$

अथवा

यदि X_{(r),} एक F(x) c.d.f. वाले वितरण से आमाप n के एक यादृच्छिक नमूने में rवाँ अनुक्रम सांख्यिकीय है, जिसमें F(x) सतत् है। तब F(X_(r)) निम्नलिखित में से किससे n आमाप के एक यादृच्छिक नमूने में rवाँ अनुक्रम सांख्यिकीय है ?

- (A) (-1, +1) के ऊपर एकसमान वितरण
- (B) (0, 1) के ऊपर एकसमान वितरण
- (C) सामान्य वितरण
- (D) घातांकी वितरण

69. निम्नलिखित में से कौनसा कथन असत्य है ?

- (A) एक पूर्ण रूप से परिमित पूर्ण मैट्रिक स्थान, क्रमिक रूप में सघन होता है
- (B) एक पूर्ण रूप से परिमित मैट्रिक स्थान पृथक्करणीय है
- (C) एक क्रमिक रूप में सघन मैट्रिक स्थान सर्वत: परिमित होता है परन्तु पूर्ण नहीं होता
- (D) एक क्रमिक रूप में सघन मैट्रिक स्थान सर्वत: परिमित और पूर्ण होता है

T.B.C. : 28/15/ET-III 85

Suppose that a two state Markov chain is defined by a transition matrix T and an initial state matrix S_0 . Which of the following is a *true* statement ?

(A) The dimension of T is 3×3 and the dimension of S_0 is 3×1

(B) The dimension of T is 2×1 and the dimension of S₀ is 2×2

(C) The dimension of T is 2×2 and the dimension of S_0 is 2×1

(D) The dimension of T is 2×2 and the dimension of S_0 is 1×1

70. Which of the following groups is not solvable ?

(A) A₄

(B) Group of order 49

(C) The group of upper triangular invertible $n \times n$ matrices

(D) A₅

Or

If $\hat{\beta}$ is a solution of normal equation :

 $X'X\beta = X'Y$

in the Gauss-Markov set up $(Y, X\beta, \sigma^2 I)$, then consider the following statements :

(1) In general $\hat{\beta}$ is not an unbiased estimator of β

(2)
$$E(Y - X\beta) = 0$$

(3)
$$D(Y - X\hat{\beta}) = D(Y) + D(X\hat{\beta})$$

(4) Cov
$$(Y - X\hat{\beta}, X\hat{\beta}) = 0$$

Of these statements :

- (A) Only (1) and (2) are correct
- (C) Only (3) is correct

- (B) Only (2) and (3) are correct
- (D) Only (1), (2) and (4) are correct

T.B.C. : 28/15/ET-III

86

अथवा

मान लीजिए कि एक दो दशाओं वाली मार्कोव शृंखला संक्रमण मैट्रिक्स T और एक आरम्भिक दशा मैट्रिक्स S₀ से परिभाषित है। निम्नलिखित में से कौन-सा कथन **सत्य** है ?

(A) T का आयाम 3×3 है और S $_0$ का आयाम 3×1 है

(B) T का आयाम 2 × 1 है और S₀ का आयाम 2 × 2 है

(C) T का आयाम 2 × 2 है और S₀ का आयाम 2 × 1 है

(D) T का आयाम 2×2 है और S₀ का आयाम 1×1 है

70. निम्नलिखित में से कौनसा समूह समाधान योग्य नहीं है ?

- (A) A4
- (B) अनुक्रम 49 का समूह
- (C) ऊपरी त्रिकोणी व्युत्क्रमण योग्य n × n मैट्रिक्स
- (D) A5

अथवा

यदि $\hat{\beta}$, गौस-मार्कोव व्यवस्था (Y, X β , $\sigma^2 I$) में सामान्य समीकरण X'X β = X'Y का एक समाधान है तब निम्नलिखित कथनों पर विचार कीजिए :

(1) साधारण रूप में β, एक β का निष्पक्ष आकलक नहीं है

(2)
$$E(Y - X\hat{\beta}) = 0$$

- (3) $D(\underline{Y} X\hat{\beta}) = D(\underline{Y}) + D(X\hat{\beta})$
- (4) Cov $(\mathbf{Y} \mathbf{X}\hat{\boldsymbol{\beta}}, \mathbf{X}\hat{\boldsymbol{\beta}}) = 0$

उपर्युक्त कथनों में से कौन-सा/से सही है/हैं ?

- (A) केवल (1) और (2)
 (B) केवल (2) और (3)
- (C) केवल (3) (D) केवल (1), (2) और (4)

T.B.C. : 28/15/ET-III

71. Which of the following is not a field ?

(A)
$$\frac{\mathbf{Z}}{2\mathbf{Z}}$$
 (B) $\frac{\mathbf{Z}}{4\mathbf{Z}}$
(C) $\frac{\mathbf{Z}}{5\mathbf{Z}}$ (D) $\frac{\mathbf{Z}}{7\mathbf{Z}}$

Or

 X_i , $i = 1, 2, \dots, n$, are i.i.d. random variables with c.d.f. F(x) and p.d.f. f(x). Then the p.d.f. $g_2(x)$, where $Z = \min\{X_1, X_2, \dots, X_n\}$, is :

(A)
$$n[F(x)]^{n-1} \cdot f(x)$$
 (B) $n[1 - F(x)]^{n-1} \cdot f(x)$

(C) $[1 - F(x)]^{n-1}$, f(x) (D) $[F(x)]^{n-1}$, f(x)

72. Lagrangian is defined as :

(A) L = T - V, where T is kinetic energy and V is potential energy

(B) L = T + V, where T is kinetic energy and V is potential energy

(C) L = TV, where T is kinetic energy and V is potential energy

(D) L = T/V, where T is kinetic energy and V is potential energy

Or

 $M_x(t) = e^{t^2/8}$ is the moment generating function of :

- (A) Normal distribution (B) Chi-square distribution
- (C) Binomial distribution (D) Poisson distribution

71. निम्नलिखित में से कौनसा क्षेत्र नहीं है ?

(A)
$$\frac{\mathbf{Z}}{2\mathbf{Z}}$$
 (B) $\frac{\mathbf{Z}}{4\mathbf{Z}}$
(C) $\frac{\mathbf{Z}}{5\mathbf{Z}}$ (D) $\frac{\mathbf{Z}}{7\mathbf{Z}}$

अथवा

 $X_i, i = 1, 2, ..., n, c.d.f. F(x) और p.d.f. <math>f(x)$ वाले i.i.d. यादृच्छिक चर हैं। तब p.d.f. $g_2(x)$ क्या है ? जहाँ $Z = \min\{X_1, X_2, ..., X_n\}$: (A) $n[F(x)]^{n-1} \cdot f(x)$ (B) $n[1 - F(x)]^{n-1} \cdot f(x)$

(C) $[1 - F(x)]^{n-1}$, f(x) (D) $[F(x)]^{n-1}$, f(x)

72. लाग्रांजियन को कैसे परिभाषित किया जाता है ?

(A) L = T - V, जहाँ T गतिज ऊर्जा है और V स्थितिज ऊर्जा है

(B) L = T + V, जहाँ T गतिज ऊर्जा है और V स्थितिज ऊर्जा है

(C) L = TV, जहाँ T गतिज ऊर्जा है और V स्थितिज ऊर्जा है

(D) L = T/V जहाँ T गतिज ऊर्जा है और V स्थितिज ऊर्जा है

अधवा

89

 ${
m M}_{
m X}(t)=e^{t^2/8}$ किसका आधूर्ण जनक फलन है ?

(A) सामान्य वितरण
 (B) काई-वर्ग वितरण

(C) द्विपद वितरण (D) प्वासीं वितरण

T.B.C. : 28/15/ET-III

73. A 2 \times 2 matrix which commutes with every 2 \times 2 matrix is of the form :

Or

(A)
$$\begin{bmatrix} 0 & a \\ a & 0 \end{bmatrix}$$
 (B) $\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$
(C) $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ (D) $\begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix}$

In a Markov chain, a state is said to be Ergodic if it is :

(A) Non-null periodic recurrent state

(B) Non-null a periodic recurrent state

(C) Non-null periodic transient state

(D) Non-null a periodic transient state

74. If $X = \{a, b, c\}$, then which of the following is not a topology on X?

(A)
$$\tau = \{\phi, X, \{a\}, \{b\}\}$$

(B)
$$\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$$

(C)
$$\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$$

(D)
$$\tau = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$$

Or

If r is the observed correlation coefficient in a sample of n pairs of observations from a correlated bivariate normal population, then the statistic :

$$\frac{1}{2} \log_e \left(\frac{1+r}{1-r} \right)$$

is approximately normal with variance :

(A)
$$\frac{1}{n-3}$$
 (B) $\frac{1}{n-2}$
(C) $\frac{1}{n-1}$ (D) $\frac{1}{n}$

T.B.C. : 28/15/ET-III

90

एक 2 × 2 मैट्रिक्स, जो प्रत्येक 2 × 2 मैट्रिक्स के साथ यात्रा करता है, निम्नलिखित में से किस 73. रूप का है ?

(A)	ſo	<i>a</i>]			$\begin{bmatrix} a \end{bmatrix}$	0
	a	o	8	(B)	lo	a
(C)	a	0]		(D)	o	a
	lo	$\begin{bmatrix} 0\\b \end{bmatrix}$			b	0

अथवा

एक मार्कोव शृंखला में, एक दशा को एगोंडिक कहा जाता है यदि यह :

- (A) गैर-शून्य नियतकालिक आवर्ती दशा
- (B) गैर-शून्य एक कालिक आवर्ती दशा
- (C) गैर-शून्य नियतकालिक अस्थायी दशा
- (D) गैर-शून्य एक कालिक अस्थायी दशां

यदि X = $\{a, b, c\}$ तब निम्नलिखित में से कौन X पर एक संस्थितिक नहीं है ? 74.

- (A) $\tau = \{\phi, X, \{a\}, \{b\}\}$
- (B) $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$
- (C) $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$
- (D) $\tau = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$

अथवा

यदि r, एक सम्बद्ध द्विचर सामान्य जनसंख्या से पर्यवेक्षण का n युग्मों के एक नमूने में पर्यवेक्षित सहसम्बन्ध गुणांक है तब सांख्यिकीय $rac{1}{2} \log_r \left(rac{1+r}{1-r}
ight)$ किस प्रसरण के साथ लगभग सामान्य

충 :

(B) $\frac{1}{n-2}$ (A) $\frac{1}{n-3}$ (D) $\frac{1}{n}$ (C) $\frac{1}{n-1}$

$$\frac{d^2y}{dx^2} + xy = 1$$

 $y(0)=0,\,y'(0)=0$

is equivalent to the Volterra integral equation :

(A)
$$y(x) = \frac{x^2}{2} + \int_0^x (t-x)y(t) dt$$
 (B) $y(x) = \frac{1}{2}x + \int_0^x t(t-x)y(t) dt$
(C) $y(x) = \frac{1}{2} + \int_0^x t(t-x)y(t) dt$ (D) $y(x) = \frac{1}{2}x^2 + \int_0^x t(t-x)y(t) dt$
Or

What is the probability that the sample median based on a random sample of size 3 drawn from a distribution with p.d.f. :-

$$f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$
exceeds $\frac{1}{2}$?
(A) $\frac{24}{32}$ (B) $\frac{26}{32}$
(C) $\frac{29}{32}$ (D) $\frac{27}{32}$
T.B.C. : 28/15/ET—III 92

 $\frac{d^2y}{dx^2} + xy = 1$

y(0) = 0, y'(0) = 0

किस वॉल्टेरा समाकलन समीकरण के बराबर है ?

(A)
$$y(x) = \frac{x^2}{2} + \int_0^x (t-x)y(t) dt$$
 (B) $y(x) = \frac{1}{2}x + \int_0^x t(t-x)y(t) dt$

(C)
$$y(x) = \frac{1}{2} + \int_{0}^{x} t(t-x)y(t) dt$$
 (D) $y(x) = \frac{1}{2}x^{2} + \int_{0}^{x} t(t-x)y(t) dt$

अथवा

इसकी क्या सम्भावना है कि p.d.f. $f(x) = \begin{cases} 2x, \ 0 < x < 1 \\ 0, & \text{and } vare and the constraints of the equation of the equ$

93

3 के एक यादृच्छिक नमूने पर आधारित नमूना माध्यिका $rac{1}{2}$ से अधिक है ?

(A)
$$\frac{24}{32}$$
 (B) $\frac{26}{32}$

(C) $\frac{29}{32}$ (D)

T.B.C. : 28/15/ET-III