DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

TEST BOOKLET AP(ELECT.)-2016

Time	Allowed: 2 Hours [Maximum Marks: 100
	All questions carry equal marks.
	INSTRUCTIONS
1.	Immediately after the commencement of the examination, you should check that test booklet does not have any unprinted or torn or missing pages or items, etc. If so, get it replaced by a complete test booklet.
2.	Write your Roll Number only in the box provided alongside.
	Do not write anything else on the Test Booklet.
3.	This Test Booklet contains 100 items (questions). Each item comprises four responses (answers). Choose only one response for each item which you consider the best.
4.	After the candidate has read each item in the Test Booklet and decided which of the given responses is correct or the best, he has to mark the circle containing the letter of the selected response by blackening it completely with Black or Blue ball pen. In the following example, response "C" is so marked:
	(A) (B) (D)
5.	Do the encoding carefully as given in the illustrations. While encoding your particulars or marking the answers on answer sheet, you should blacken the circle corresponding to the choice in full and no part of the circle should be left unfilled. After the response has been marked in the ANSWER SHEET, no erasing/fluid is allowed.
6,	You have to mark all your responses ONLY on the ANSWER SHEET separately given according to 'INSTRUCTIONS FOR CANDIDATES' already supplied to you. Responses marked on the Test Booklet or in any paper other than the answer sheet shall not be examined.
7.	All items carry equal marks. Attempt all items. Your total marks will depend only on the number of correct responses marked by you in the Answer Sheet. There will be no
	negative marking. Before you proceed to mark responses in the Answer Sheet fill in the particulars in the
8.	front portion of the Answer Sheet as per the instructions sent to you.
9.	If a candidate gives more than one answer, it will be treated as a wrong answer even
200	if one of the given answers happens to be correct.
10.	After you have completed the test, hand over the Answer Sheet only, to the Invigilator

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

AP(ELECT.)-2016

Tin	ne Allowed : 2 Hours		[Maximum Marks	: 100
1.	Which of the following transdu	ıcer requires a l	nigh input impedance pream	plifier
	for proper measurement ?			
	(A) Thermocouple	(B)	Thermistor	
	(C) LVDT	(D)	Piezoelectric	
2.	The positive sequence curren	t for a L-L faul	t of a 2 kV system is 1.4 k/	A, and
	corresponding current for a L-	L-G fault is 2.2	kA. The zero sequence impe	dance
	of the system is:			
	(A) 62.75 Ω	(B)	4.5275 Ω	
	(C) 5.275 Ω	(D)	0.5275 Ω	
3.	Time graded protection of a	radial feeder o	an be achieved by :	
	(A) Definite time relays	a 371 i		
	(B) Inverse time relays			
	(C) Both definite and invers	se time relays		
	(D) None of the above		*	
4.	Zero sequence currents can fle	ow from a line to	transformer bank if the wi	ndings
	are in :			
	(A) Grounded star/delta	(B)	Delta/star	
	(C) Star/grounded star	(D)	Delta/delta	
AP	(ELECT.)-2016	2		

5.	Shunt compensation in an EHV line is used to :	
	(A) Improve stability	
	(B) Improve the voltage profile	
	(C) Reduce fault level	
	(D) Substitute for synchronous phase modifier	
6.	Unified Power Flow Controller (UPFC) is a :	
	(A) Shunt-series FACTS controller	
	(B) Series-shunt FACTS controller	
	(C) Series-series FACTS controller	
	(D) Shunt-shunt FACTS controller	
7.	The value of boost factor is equal to unity when TCSC is operated i	n:
	(A) Capacitive Boost Mode	
	(B) Inductive Boost Mode	
	(C) Bypass Mode	
	(D) Blocking Mode	
AP	(ELECT)-2016 3	PTC

8. If, for a given alternator in economic operation mode, the incremental cost is given by :

IC = 0.012 P + 8 Rs/MW,
$$\frac{dP_L}{dP}$$
 = 0.2

and plant penalty factor $(\lambda) = 25$, then the power generation is :

(A) 1000 MW

(B) 1250 MW

(C) 750 MW

(D) 1500 MW

9. If inductance and capacitance of a system are 1 H and 0.01 μF respectively and the instantaneous value of current interrupted is 10 A, then voltage across the breaker contacts will be :

(A) 50 kV

(B) 100 kV

(C) 60 kV

(D) 75 kV

10. Commutation overlap in the phase controlled ac to dc converters is due to :

- (A) load inductance
- (B) harmonic content of load current
- (C) switching operation in the converter
- (D) source inductance

11.	Simplest method of eliminating third	harmonic	from the output voltage waveform
	of a single phase bridge inverter is	s to use	±0
	(A) Inverters in series	(B)	Single pulse modulation
	(C) Stepped wave inverters	(D)	Multiple pulse modulation
12.	A chopper can be used on:		
	(A) Pulse width modulation only		
	(B) Frequency modulation only		
	(C) Amplitude modulation only		
	(D) Both PWM and FM		
13.	Normally $Z_{\mbox{\scriptsize BUS}}$ matrix is a :		
	(A) Null matrix	(B)	Sparse matrix
	(C) Full matrix	(D)	Unity matrix
14.	Compared to Gauss-Seidel method,	Newton-	Raphson method takes :
	(A) Less number of iterations and	more tir	me per iteration
	(B) Less number of iterations and	less tim	e per iteration
	(C) More number of iterations and	more ti	me per iteration
	(D) More number of iterations and	less tin	ne per iteration
AP(ELECT.)-2016	5	P.T.O.

		22			
15.	A shunt reactor of 100 M	IVAR is opera	ted at	98% of its rated	d voltage and at
	96% of its rated frequen	cy. The reacti	ve po	wer absorbed by	the reactor is:
	(A) 98 MVAR		(B)	10.402 MVAR	er g
	(C) 96.04 MVAR		(D)	100.04 MVAR	5
16.	A travelling wave 400/	1/50 means cr	est va	alue of:	
	(A) 400 V with rise tim	e of 1/50 s			
	(B) 400 kV with rise time	me 1 s and fa	ll tim	e 50 s	
	(C) 400 kV with rise tin	me 1 μs and 1	fall ti	me 50 μs	
	(D) 400 MV with rise to	ime 1 μs and	fall t	ime 50 μs	
17.	A power station has a n	naximum dem	and o	f 15 MW. The ar	nual load factor
	is 50% and plant capaci	ty factor is 40	%. W	hat is the reserve	e capacity of the
	plant ?				
	(A) 1875 kW		(B)	3750 kW	
	(C) 6000 kW		(D)	7500 kW	
AP	(ELECT.)-2016	6			

18. The voltage ratio transfer function of an active filter is given by :

$$\frac{{\rm V}_1\left(s\right)}{{\rm V}_2\left(s\right)} \; = \; \frac{s^2 \; + \; c}{s^2 \; + \; as \; + \; b} \, , \label{eq:V1_sol}$$

The circuit in a question is a

$$V_1(s)/V_2(s) = [(s^2 + c)/(s^2 + as + b)].$$

(A) Low pass filter

(B) High pass filter

(C) Band pass filter

(D) Band reject filter

- Opto-coupler is used to :
 - (A) Reduce SCR turn-off time
 - (B) Protect IGBTs against dv/dt
 - (C) Reduce gate signal
 - (D) Isolate gating circuitry from power lines

20. A laser diode can readily be pulse-modulated, since the photon life time isthan the carrier life time.

(A) Much higher

(B) Higher

(C) Smaller

(D) Much smaller

						35
21.	Which one of the following contro	ls reduces	the size of	the tra	nsformer	in a
	switch mode ac power supply ?					
	(A) Resonant control					
	(B) Phase control					
	(C) Bidirectional control					
	(o) Didirectional control					
	The state of the s					
	(D) PWM control					
22.	The most suitable device for high	frequenc	y inversion	in SMI	PS is:	â
	7:					
	(A) BJT	(B)	MOSFET			
	(C) IGBT	(D)	GTO			
		2000				
23.	The operation of an inverter fed in	duction m	otor can be	shifted	from moto	ring
	to regenerative braking by:	-3				
	(A) P					
	(A) Reversing phase sequence					
	(B) Reducing inverter voltage					
	(b) reducing inverter voltage					
	(C) Decreasing inverter frequency	,				
	(o) Doctoring medical				11	
	(D) Increasing inverter frequency			1.		
AP	ELECT.)-2016	8				
431 (LLLL TITULO					

24.	Line regulation is determined b	у:	
	(A) Load current		
	(B) Load current and zener cur	rrent	
ei E	(C) Changes in load resistance	and output	voltage
	(D) Changes in output voltage	and input	voltage
25.	An electric motor developing a	starting tore	que of 15 Nm, starts with a load
	torque of 7 Nm on its shaft. If the	acceleration	at start is 2 rad/sec ² , the moment
	of inertia of the systems must l	be (neglectin	ng viscous and Coulomb friction)
	(A) 0.25 kgm ²	(B)	0.25 Nm ²
	(C) 4 kgm ²	(D)	4 Nm ²
26.	The phase controlled rectifiers us	ed in speed	control of dc motors converts fixed
	ac supply voltage into		output voltage.
	(A) Variable dc	(B)	Variable ac
	(C) Variable frequency ac	(D)	Full rectified ac
AP((ELECT.)-2016	9	P.T.O

ng
nent agains
FF position
5
or is :

30.	In a multivariable control system there is :	
	(A) more than one input variable but one unique output	
	(B) one input variable but variable outputs	
	(C) more than one input variable or more than one output variable	
	(D) more than one input variable and more than one output variable	
31.	Radio interference from a fluorescent tube can be reduced by :	
	(A) Connecting a small capacitor across starter terminals	
	(B) Eliminating choke	
	(C) Putting two tubes in parallel	
	(D) Any of the above	
32.	The lamp that cannot sustain much voltage fluctuations is :	
	(A) incandescent lamp	
	(B) sodium vapour lamp	
	(C) mercury iodide lamp	
	(D) mercury vapour lamp	
AP((ELECT.)-2016 11 P.T.O	

33. Which one of the following gives the transfer function of a phase-lag compensation network?

(A)
$$\frac{1 + s\alpha T}{1 + sT}$$
; $\alpha < 1$

(B)
$$\frac{1 + s\alpha T}{1 + sT}; \alpha > 1$$

(C)
$$\frac{1 + s\alpha T}{1 + sT}$$
; $\alpha = 1$

(D)
$$\frac{1-s\alpha T}{1+sT}$$
; $\alpha < 1$

- 34. The basic electrical requirement in arc welding is that there should be :
 - (A) Coated electrodes
 - (B) no arc blow
 - (C) dc power supply
 - (D) high open-circuit voltage
- 35. During spot welding, the current flows for :
 - (A) fraction of a minute
 - (B) fraction of a second to several seconds
 - (C) few milliseconds
 - (D) few microseconds

	(A) Belt drive	(B)	Rope drive		
	(C) Chain drive .	(D)	Gear drive	=	
37.	For quick speed reversal, the n	notor prefer	red is:		
	(A) dc motor				
	(B) squirrel-cage induction mot	or			
	(C) slip-ring induction motor				
	(D) synchronous motor	*			
38.	The type of drive used for a pape	er mill requi	ring constant spee	d operation a	nd
	flexibility of control is:		94		
	(A) group drive			F	
	(B) multi-motor drive				
	(C) individual or multi-motor of	lrive 👂			
	(D) individual drive				
39.	An elevator drive is required t	o operate in	· ·		
	(A) one quadrant only	(B)	two quadrants		
	(C) three quadrants	(D)	four quadrants		
AP	(ELECT.)-2016	13		P.T.	0.

36. The least expensive drive is:

40.	The power consumption in PMMC ins	strume	ents is typically a	bout :
	(A) 0.25 W to 2 W	(B)	0.25 mW to 2 m	ıW
	(C) 25 μW to 200 μW	(D)	2 W to 3 W	5
41.	Regulating transformers are used in p	power	systems for contr	ol of:
	(A) voltage	(B)	power factor	
	(C) power flow	(D)	all of these	
42.	. The cirtical clearing time of a fault i	n pow	er system is relat	ed to:
	(A) reactive power limit			
	(B) short-circuit limit			
	(C) steady-state stability limit			
	(D) transient stability limit		× v = -	27
43.	In the presence of corona, electrostatic co	oupling	g and	electromagnetic
	coupling			
	(A) decreases, increases			
	(B) increases, decreases			
	(C) increases, remains the same			
	(D) remains the same, decreases			
AP	P(ELECT.)-2016 14	e.	1	

4.	A lightning arrester provides :
	(A) low impedance path
	(B) high impedance path
	(C) low resistance path
	(D) high resistance path between line and earth during operation
45.	A line trap in along transmission line is used to:
	(A) improve the power factor
	(B) confine the carrier signals in the line
	(C) dampen the overvoltage oscillations
	(D) protect the line against direct lightning stroke
46	Two input phase comparator in a static relay is made up of a :
	(A) transformer amplifier
	(B) transistor logic circuit
	(C) rectifier bridge
	(D) thyristors bridge
100	16

	8	
47.	The earth fault in stator caus	ses:
	(A) arcing to core	es :
	(B) severe heating in conduct	ors and thereby damaging the insulation
	(C) open circuit in the stator	50 ab 100
	(D) both arcing to core and seve	ere heating in conductors and thereby damaging
	the insulation	
48.	In HVDC transmission, there	are predominant:
	(A) current harmonics on ac	side and voltage harmonics on dc side of
	converters	a de Ver
	(B) voltage harmonics on ac	side and current harmonics on dc side of
	converters	
	(C) current harmonics only on	n the dc side of the converters
	(D) voltage harmonics only on	the ac side of the converters
49.	In compressed gas insulated	d cable, SF ₆ has the gas pressure in the
	range of:	E
	(A) 10-20 mmHg	(B) 80-100 mmHg
	(C) 3-5 kg/cm ²	(D) 40-50 kg/cm ²
AP(ELECT.)-2016	16

	(A) load duration curve	*			
	(B) chronological load curve			Ģ ·	
	(C) energy load curve				
	(D) both load duration curve a	and chronolog	ical load curve		
51.	Power demand can be estimate	ed approximat	tely by :		
	(A) Load survey method	(B)	Mathematical	method	
	(C) Economic parameters	(D)	Statistical me	thod	
52.	Salvage value of a plant:				
	(A) is always positive				
	(B) is always zero				
	(C) is always negative	19			
×.	(D) may be positive, zero or	negative			
53	. For a nuclear plant, the usef	ul life is expe	ected to be :		
	(A) 10 years	(B)	30 years		
	(C) 60 years	(D)	80 years		n.m.o
A	P(ELECT.)-2016	17		41	P.T.O

50. A mass curve can be plotted from :

	1
	(A) System voltage is reduced
	(B) System frequency is reduced
	(C) System loads are switched off
	(D) System power factor is changed
55.	In the load-frequency control system with free governor action, the increase
	in load demand under steady conditions is met :
	(A) Partly by increased generation and partly by decreases of load demand
	(B) Partly by increased generation and partly by increased excitation
	(C) Only by increased generation by opening of steam valve
	(D) Only by decrease of load demand due to drop in system frequency
56.	If the generating station is situated very close to the load centre, the penalty
	factor for this unit is :
	(A) zero . (B) almost unity
	(C) negative (D) very high
AP(ELECT.)-2016 18
	- ·

54. During load shedding:

57.	The resolution of a 12 bit D/A converter using a binary ladder with +10 V				
	as the full scale output	will be:		2	
	(A) 2.44 mV	(B)	3.50 mV		
	(C) 4.32 mV	(D)	5.12 mV		
58.	For stable operation of i	interconnected syste	m, the passive	element that can	
	be used as the intercon	necting element is :			
	(A) reactor	(B)	resistor		
	(C) capacitor	(D)	resistor and	capacitor	
59.	As per recommendation of ISI, the maximum load that can be connected in				
	one sub-circuit is:			E 9	
	(A) 500 W	(B)	800 W		
	(C) 1000 W	(D)	1600 W		
60.	Non-metallic conduits us	sed in internal wiri	ng are genera	lly made of:	
	(A) wood	(B)	rubber		
	(C) PVC	(D)	cork		
AP(ELECT.)-2016	19		P.T.O.	

61.	Which one of the following is	custom power	device ?
	(A) UPFC	(B)	TCSC
	(C) SPS	(D)	DVR
62.	may be	defined as the d	legree to which both the utilization
ii	and delivery of electric power a	affects the peri	formance of electrical equipment.
	(A) Power quality problem	(B)	Power quality
	(C) FACTS device	(D)	Custom power device
63.	Power transmission system ma	y also have ar	n impact on the quality of power.
	This is because the modern tra	nsmission syst	tems have a/an
	resistance to reactance ratio r	esulting in lov	w system damping.
	(A) zero	(B)	low
	(C) high	(D)	infinite
64.	A is any occur	rence manifest	ed in voltage, current or frequency
	deviation that may result in fa	ailure or mis-o	peration of customer equipment.
	(A) Power quality problem	(B)	Power quality
	(C) FACTS device	(D)	Custom power device
AP(ELECT.)-2016	20	

65.	Custom power describes the value-added power that electric utilities will offer
	their customers in the future, focusing on the and
	(A) quality of power flow, reliability
	(B) power flow control, reliability
	(C) stability enhancement, reliability
	(D) quality of power flow, stability enhancement
66.	Under full-load condition, the power factor of the rotor circuit is :
	(A) about 0.2 lagging
	(B) about 0.5 lagging
	(C) about 0.8 lagging
	(D) almost unity
67.	. For a 20 kW, 3-phase, 400 V induction motor, the no-load current is
	about:
	(A) 2 A (B) 10 A
	(C) 40 A (D) 100 A
AI	P(ELECT.)-2016 21 P.T.O.

	(A)	improves heat transfer		
	(B)	reduces noise		
(4)	(C)	suppresses the undesirable harmonics		
11.5	(D)	none of the above		
69.	Wa	ard-Leonard control is basically a :		
	(A)	Voltage control method		1
	(B)	Field diverter method		
	(C)	Shunt armature control		N
	(D)	Armature resistance control method		
70.	An	alternator with higher value of SCR has	:	
	(A)	Poor voltage regulation and lower stability	ty limi	t
	(B)	Better voltage regulation and higher stat	oility li	imit
	(C)	Poor voltage regulation and higher stabil	ity lin	nit
	(D)	Better valtage regulation and lower stabi	lity lir	nit
AP(ELE	CT.)-2016 22		

68. Skewing of slots:

71.	The tap changing facility is usually provided on transformers.				
	(A) High voltage	(B)	Current		
	(C) Distribution	(D)	Power		
72.	A transformer is designed for certain	ambie	ent temperature. If it is operated		
	a temperature 10°C above the temper	ature fo	or which the transformer has been		
	designed, its kVA rating should be				
	(A) Reduced by 20%	(B)	Reduced by 10%		
	(C) Reduced by 5%	(D)	The same as designed		
73.	brushes are u	ised for	higher values of current density.		
	(A) Metal graphite	(B)	Natural graphite		
	(C) Hard carbon	(D)	Carbon		
74.	Pedestal bearings are used for		machines.		
	(A) Small size	(B)	Medium size		
	(C) Large size	(D)	Medium and large size		
AP	(ELECT.)-2016 2:	3	P.T.O.		

	(A) 10 to 15 mm	(B)	15 to 25 mm	
	(C) 25 to 35 mm	(D)	50 to 60 mm	
76.	When the firing angle	of a single-phase,	fully controlled	l rectifier feeding
	constant de current into	a load is 30°, the	displacement p	ower factor of the
	rectifier is:			
	(A) 1	(B)	0.5	
	(C) 1/√3	(D)	$\sqrt{3}/2$	
77.	A flat slab of dielectric (8	$e_r = 5$) is placed nor	mal to a uniforn	n electric field with
	a flux density D = 1 C/			
	in the slab (in C/m ²) w	ill be:		
	(A) 0.8	(B)	1.2	
	(C) 4.0	(D)	6.0	
78.	In GTO, anode current	begins to fall whe	n gate current	•
	(A) is negative peak at	t time $t = 0$		
	(B) is negative peak at	t t = storage period	d	
	(C) just begins to beco	me negative at t =	= 0	1.75
	(D) is negative peak a	t t = (storage time)	+ fall time)	
AF	P(ELECT.)-2016	24		

75. In dc machines, the slot pitch usually lies between :

79.	Reactive power is a function of .		***************************************
	(A) voltage phase angle	(B)	voltage magnitude
	(C) active power	(D)	resistance
80.	Megger is an instrument for :		
	(A) measuring current	(B)	measuring voltage
	(C) testing insulation	(D)	measuring power
81.	Who published the Vansavalis	of the Rajas	of Kangra, Nurpur, Mandi, Suket,
	Chamba and Rajauri?		
	(A) Vigne	(B)	Alexander Cunningham
	(C) Captain Harcourt	(D)	Thomas Coryat
82.	According to Hutchison and Vo	ogel, what wa	as the total number of Thakurains
	in the Shimla Hills?		
	(A) 12	(B)	18
	(C) 20	(D)	22
AP	(ELECT.)-2016	25	P.T.O.

83.	Which raja of Kullu subdued the Thaku	ırs of h	is state, who has been constantly			
	at strife with him, around the middle of sixteenth century?					
	(A) Partap Singh	(B)	Bahadur Singh			
	(C) Man Singh	(D)	Jai Singh			
84.	At which place in Kinnaur District is	s Usha	Devi temple ?			
9	(A) Kamru	(B)	Taranda			
	(C) Sangla	(D)	Nichar			
85.	Which mountain pass joins Lahul an	d Bh	armaur ?			
	(A) Chobia	(B)	Hamtah			
- 10	(C) Kugti	(D)	Jalsu			
86.	Which river's tributary is Khara-ka-k	thala s	tream ?			
	(A) Bata	(B)	Andhra			
	(C) Giri	(D)	Markanda			
AP(ELECT.)-2016 26					

87.	In which district of H.P.	is Talra Sanctuary	. ?	
	(A) Kinnaur	(B)	Kullu	
	(C) Shimla	(D)	Bilaspur	
88.	In which river basin is	Thirot hydro-power	project ?	
	(A) Beas	(B)	Satluj	
14	(C) Ravi	(D)	None of these	
89.	To which place did Major l	Mehar Dass who took	active part in the Ir	ndian National
	Army (INA) belong ?			
	(A) Dharamsala	(B)	Naharanpukhar	
	(C) Neri	(D)	Chadiyar	_ 8
90.	As per advance estimates	(based on economic p	performance upto De	cember, 2015),
	what is expected to be t	he rate of economic	growth in H.P. du	ring 2015-16?
	(A) 7.0 percent	(B)	7.5 percent	
	(C) 7.7 percent	(D)	8.1 percent	
AP	P(ELECT.)-2016	27		P.T.O.

91.	When was Pradhan Mantri Saan	sad Adars	sh Gram Yojna launched?			
	(A) August, 2014	(B)	October, 2014			
	(C) February, 2015	(D)	None of these			
92.	Who was sworn in as the Chief Minister of Kerala after the 2016 Vidhan Sabha					
	elections ?					
	(A) Pinyari Vijayan					
	(B) P. Sathasivam					
	(C) V.S. Achutanandan					
	(D) Ooman Chandy		0			
0.0		to Object	Chi-			
93.	In which district of Maharashtra	is Shani	Shinghapur temple ?			
	(A) Nanded	(B)	Amravati			
	(C) Ahmednagar	(D)	Akola			
AP(ELECT.)-2016	28				

94.	In the Forbes 2016 list of most	powerful bus	sinesswome	n in As	ia, who a	among	
	the following is at the top am	ong eight In	dian busine	ss won	nen ?		
	(A) Arundhati Bhattacharya	(B)	Nita Amb	ani			
	(C) Chanda Kochar	(D)	Deepali G	oenka	*		
		*S1 (41),					
95.	When was Reserve Bank of India nationalised?						
	(A) 1947	(B)	1949				
	(C) 1956	(D)	1963	ď			
	¥						
96.	Who is Tsai Ing-Wen ?				25.4	. ,	
	(A) First woman President of	Taiwan					
		-					
	(B) President of South Korea			ä .			
	(C) Chief Executive of Hong	Kong					
	(D) President of Vietnam						
AP	(ELECT.)-2016	29				P.T.O.	

97.	What was the venue of Shanghai Cooperation Organisation Summit which was						
	held in July, 2015 ?						
	(A) UAE	(B)	USA				
	(C) UFA	. (D)	UPA				
98.	Which day is observed as world day to combat desertification and drought?						
	(A) March 15	(B)	June 17				
	(C) August 19	(D)	November 21				
99.	Among the following which country has the lowest life expectancy?						
	(A) Zimbabwe	(B)	Zambia				
	(C) Lesotho	(D)	Sierra Leone				
100	. Government of which country controls nearly everything about how people live;						
	nment approved haircut styles ?						
	(A) Cuba	(B)	Vietnam				
	(C) North Korea	(D)	Kiribati				
AP(ELECT.)-2016	30	12				