DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

TEST BOOKLET SERIES

TEST BOOKLET A.E.(CIVIL)/DM-2016

Time	Allowed : 2 Hours] [Maximum Marks : 100
	All questions carry equal marks.
232	INSTRUCTIONS
1.	Immediately after the commencement of the examination, you should check that test booklet does not have any unprinted or torn or missing pages or items, etc. If so, get it replaced by a complete test booklet.
2.	Encode clearly the test booklet series A, B, C or D as the case may be in the appropriate place in the answer-sheet.
3.	Write your Roll Number only in the box provided alongside. Do not write anything else on the Test Booklet.
4.	This Test Booklet contains 100 items (questions). Each item comprises four responses (answers). Choose only one response for each item which you consider the best.
5.	After the candidate has read each item in the Test Booklet and decided which of the given responses is correct or the best, he has to mark the circle containing the letter of the selected response by blackening it completely with Black or Blue ball pen. In the following example, response "C" is so marked:
	(A) (B) (D)
6.	Do the encoding carefully as given in the illustrations. While encoding your particulars or marking the answers on answer sheet, you should blacken the circle corresponding to the choice in full and no part of the circle should be left unfilled. After the response has

been marked in the ANSWER SHEET, no erasing/fluid is allowed.

You have to mark all your responses ONLY on the ANSWER SHEET separately given according to 'INSTRUCTIONS FOR CANDIDATES' already supplied to you. Responses marked on the Test Booklet or in any paper other than the answer sheet shall not be examined.

All items carry equal marks. Attempt all items. Your total marks will depend only on 8. the number of correct responses marked by you in the Answer Sheet. There will be no negative marking.

Before you proceed to mark responses in the Answer Sheet fill in the particulars in the 9. front portion of the Answer Sheet as per the instructions sent to you.

If a candidate gives more than one answer, it will be treated as a wrong answer even 10. if one of the given answers happens to be correct.

After you have completed the test, hand over the Answer Sheet only, to the Invigilator. 11.

A.E.(CIVIL)/DM-2016

Time Allowed: 2 Hours [Maximum Marks: 100 The Bernoulli's equation constants for points lying on the same streamline 1. and those which lie on other streamlines will have the same value only if the flow is: irrotational uniform (A) (B) steady (C) incompressible A vertical circular cylinder open at top is filled with a liquid and then rotated 2. about its vertical axis at a constant rotational speed 'w' such that half the liquid spills out from the open top. At that instant, the pressure at the centre of the bottom will be: atmospheric pressure (A) below atmospheric pressure (B) (C) above atmospheric pressure (D) half of the original value

 2

A.E. (CIVIL)/DM-2016—A

Water ($\gamma = 9810 \text{ N/m}^3$) is held back by a tainter gate as shown in the profile, below. The vertical distance from the water surface to the spillway crest, h_c , is 3 meters. If the gate is 4 meters wide (into the page), what is the horizontal force on the gate?

(A) 44.15 kN

(B) 176.58 kN

(C) 353.16 kN

- (D) 22.07 kN
- 4. What is the primary difference between dynamic viscosity (μ) and kinematic viscosity (ν) ?
 - (A) Kinematic viscosity is independent of pressure
 - (B) Dynamic viscosity is independent of pressure
 - (C) Dynamic viscosity is independent of temperature
 - (D) Kinematic viscosity is independent of temperature
- 5. A U-tube differential manometer:
 - (A) is used upright if pressure differential is small
 - (B) is used inverted if the pressure difference is small
 - (C) cannot be used to measure the absolute pressure of a fluid
 - (D) cannot be inclined at any angle

6.	The condition for greatest hydraulic efficiency of some of the cross-sections
	of the channel is that the hydraulic radius must be equal to half of the depth.
	Which one of the following cross-sections does not satisfy the above
8	condition ?
	(A) Trapezoidal channel (B) Triangular channel
•	(C) Rectangular channel (D) Semicircular channel
7.	Consider the flow of oil with ρ = 894 kg/m 3 and μ = 2.33 kg/m.second and
	velocity of flow $V = 0.5$ m/second in a 300-m-long section of the pipeline of
	diameter 400 mm passes through the icy waters of a lake. Disregarding the
	entrance effects, what would be the pumping power required to overcome the
	pressure losses and to maintain the flow of oil in the pipe if laminar flow
	exists ?
	(A) 2.095 kW (B) 4.39 kW
	(C) 8.78 kW (D) 8.78 W
8.	The discharge per metre length over a suppressed rectangular weir of a crest
30-4	height 10 cm above the bed under a head of 10 cm, in L/s/m, is:
9 9	(A) 73 (B) 59
	(C) 106 (D) 64
	(C) 106 (D) 64
A.E.	(CIVIL)/DM-2016—A 4

- 9. The discharge, in L/min, in a 90° V-notch having a $C_d = 0.58$ under a head of 0.10 m, is approximately:
 - (A) 260

(B) 310

(C) 130

- (D) 173
- 10. In a suppressed rectangular weir the computed discharge was found to be 3% in excess of the actual discharge. If this discrepancy was due to an error in reading the head, the measured head was :
 - (A) 3% excess

(B) 2% less

(C) 2% excess

- (D) 1.2% excess
- 11. A bent pipe is shown in the vertical (x-z) plane below. A water flow enters at a velocity V, goes through a 180° turn, and leaves at the same velocity V. The pipe is supported along the bottom edge as shown.

The correct statement about the magnitude of the two forces F_x and F_z holding the pipe in place is :

(A) $F_x > 0$ and $F_z > 0$

(B) $F_x = 0$ and $F_z > 0$

(C) $F_x > 0$ and $F_z = 0$

(D) $F_x = 0$ and $F_z = 0$

10	A 1
12.	A practical example of steady non-uniform flow is given as the :
	(A) Motion of a river around bridge piers
	(B) Steadily increasing flow through a pipe
	(C) Steadily increasing flow through a reducing section
	(D) Constant discharge through a long straight tapering pipe
5.0	
13.	A stone weighs 90 N in air and when immersed in water it weighs 50 N.
125	Specific gravity of stone is:
	(A) 0.556 (B) 0.444
	(C) 1.8 (D) 2.25
14.	If Alum is required to treat water up to the extent of 10 ppm, how
	much alum in quintals per day would be needed to treat 10 MLD of
	much alum in quintais per day would be needed to treat to 1222 of
-	
	water?
	(A) 10 quintals (B) 1 quintal
	(A) 10 quintals (B) 1 quintal
	(C) 100 quintals (D) 1000 quintals
	(C) 100 quintals (D) 1000 quintals
A.E.	(CIVIL)/DM-2016—A 6

	70.7			100		
15.	The	organism, which	exhibits very	nearl	y the characteristic	s of an ideal
	path	ogenic indicator is	s: .		had hele	
3			e "			
	(A)	Entamoeba histol	lytica	(B)	Escherichia coli	y ² ***
				154		
	(C)	Salmonella typhi	10.0	(D)	Vibrio comma	
		1.05			2. J. M. J. M. J.	82
		A Company		1.5	The Marketine	
16.	The	detention period a	dopted for se	wage s	edimentation tanks	is of the order
20.00				9		
	of:	(8)				9 1 0
	,				A	
	(4)	1 0 1	1 DF 2 D 2	(D)	4—8 hours	RV.
	(A)	1—2 hours	1	(D)	4—6 Hours	
	1	55.4				
	(C)	8-16 hours		(D)	24-36 hours	
	,	9		10 000	2 2	3
					X X X X X	
17.	A se	ewage sample is h	aving initial	D.O. =	10 mg/l, final D.O.	= 2 mg/l and
			•			
	dila	tion to 1% The B	OD of the o	iven se	wage sample would	be:
100	unu	tion to 170. The D	OD of the g	.,		
					a company of the party	
	(A)	8 mg/l		(B)	10 mg/l	8 July 18
						2
94				(D)	000/1	
	(C)	100 mg/l		(D)	800 mg/l	
				1		
4.7	es.					
18.	Wh	ich of the following	is the most a	ccurat	e instrument for mea	asuring stream
						500
	velo	ocity?	*	.0 50		
					* * .	3
	(4)	m : a .		(D)	Surface float	
	(A)	Twin float	s is	(B)	Surface float	
	(C)	Partially submer	rged rod	(D)	Current meter	
	(0)	in coming business	0	,-,	Commence of the decision of the State of the	- H
A 17	CIN	II \/DM 9016 A	* 555 P	7		P.T.O.
A.E.	(CIV	IL)/DM-2016—A			E X	1.1.0.

		va fill * si s			
	the 1	ists:			
8 =		List I		List II	
	(a)	Incineration	(i)	Requires presorting, grinding	
3				and turning	
85	(b)	Sanitary landfill	(ii)	Limited to special wastes and	1
	4			selected materials	
	(c)	Composting	(iii)	High operational and	
	ØI X			maintenance cost	
	(d)	Salvage by sorting	(iv)	Rat and fly breeding	
	Code	28:			
		(a) (b) (c)		(d)	
	(A)	(ii) (iv)		(iii)	
	(B)	(i) (iv) (ii)		(iii)	
	(C)	(iii) (iv) (i)		(ii)	
	(D)	(iii) (iv) (ii)		(i)	

20.	Whi	ch of the follow	ing materials	are used a	s landfill sea	alants fo	or the con	ntrol
9.		as and leachat						
								Et.
	(1)	Lime					154	
	(2)	Sand		8				
- 4				× 5	**			
	(3)	Bentonite		1	10			
	(4)	Fly ash					14,	
	(5)	Butyl rubber	TRACT.		E			
	Sele	ect the correct	answer using	the codes	given below	7:		
	Cod	les :	. Other					
	(A)	(1), (2) and (3)					
4	(B)	(4) and (5)			34.5			30
	(C)	(3) and (5)	7 B 30	7	* 1			
*3	(D)	(1), (2) and (4)				92	
21.		town has an						
11.45		ve settling velo	The state of the s					
		limentation to						
		proximately eq			9			22
	(A)	35%		(B)	50%			×.
	(C)	75%		(D)	85%	Gi.		
A.E.	(CIV	TL)/DM-2016—	-A	9	et.		F	P.T.O.

22.	A sample of domestic sewage is digested with silver sulphate, sulphuric acid,
	potassium dichromate and mercuric sulphate in chemical oxygen demand (COD)
	test. The digested sample is then titrated with standard ferrous ammonium
	sulphate (FAS) to determine an unreacted amount of:
	(A) mercuric sulphate (B) potassium dichromate
	(C) silver sulphate (D) sulphuric acid
23.	The spacing of tile drains to relieve waterlogged land is directly proportional
	to the:
	(A) depth of drain below the ground surface
	(B) depth of impervious strata from the drain
	(C) depth of drain below the water level
	(D) coefficient of permeability of the solid to be drained
24.	One circular sewer has diameter 300 mm and another one has a diameter
8	of 600 mm. When both run half-full, what will be the ratio of velocities in
	the two pipes if the slope of both pipes is the same?
	(A) 1 (B) 1/2
	(C) $(1/2)^{2/3}$ (D) $(1/2)^{3/2}$
A.E.	. (CIVIL)/DM-2016—A 10

	the rate of filtration	ramaine unche	anged) t	he amount of wa	tor filters	d would
	the rate of intration	remains uncha	ingeu), t	ne amount of wa	.ter intere	u would
	become:					
	(A) 4 times		(B)	2 times		
		17.9			* 4 *	
	(C) 1 time		(D)	16 times	9	
5.	Among Calcareous s	sand, Calcareo	us clay,	Ooze and Corall	line debri	s, which
	one is odd?	THE P. LEWIS CO., LANSING, MICH.				
	one is out .	difference of		9		
	(A) Calcareous san	nd	(B)	Calcareous clay	,	
			1314			
	(C) Ooze		(D)	Coralline debris	s	
					19	•
7.	Which of the follow	ing is having	more cr	rushing coefficien	nt?	
	8 x			-		
	(A) Terrestrial san	ıd	(B)	Terrigenic sand	ł	
		STEEL ON				
	(C) Fine calcareou	s oolite	(D)	Coarse corallin	e debris	
		-	73			
3.	In a drained triaxia	l compression	test, a s	aturated specim	en of cohe	esionless
	sand fails under a	deviator stres	e of 53	5 kPa when the	e cell pre	eeure ie
, tii	sand lans under a	deviator stres	S 01 00	o ki a when the	e cen pre	ssure is
	150 kPa. The effect	tive angle of s	hearing	resistance will	be:	
	23.4					
	(A) 39°55'		(B)	64°55'		
8			And Street	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	(C) 50°05'		(D)	25°05'		

29.	A moist sand was tested in an unconfined compression test and failed at an
	axial stress of 150 kPa. The failure plane was found to make an angle of
	60° with the horizontal. Then the apparent cohesion contributed by capillary
1 54	moisture will be:
	(A) 43.3 kPa (B) 129.9 kPa
	(C) 144.9 kPa (D) 38.82 kPa
30.	What will be the ratio of quantity of seepage per meter length in sand to
	clay layer, if the potential drops and flow lines are equal for the same thickness,
	if $k_{\rm sand} = 3 \times 10^{-3}$ cm/sec and $k_{\rm clay} = 9 \times 10^{-7}$ cm/sec.
	(A) 1/3 (B) 3
j B	(C) 1/9 (D) 9
31.	Which of the following is true, for two-dimensional flow trough a constant
	head permeameter?
	(A) The flow net alter if the soil in the permeameter is altered
	(B) The flow net alter if the head causing flow is altered
	(C) The flow net alter if the flow direction is reversed
	(D) The flow net alter if the permeameter length is changed
A.E.	. (CIVIL)/DM-2016—A 12

- 32. Consider the following statements:
 - (1) Bearing capacity of Cohesionless soil increases with an increase in the width of the foundation
 - (2) Bearing capacity of purely cohesive soil independent of the width of the foundation
 - (3) Bearing capacity of a footing on pure clay does not significantly get affected by the presence of the water table

Out of these statements:

- (A) Only 1 and 2 are correct
- (B) Only 1 and 3 are correct
- (C) Only 2 and 3 are correct
- (D) 1, 2 and 3 are correct
- 33. Which of the following is true?
 - (A) Effective stress is important because it is a function of the engineering properties of soil
 - (B) Pore water pressure in soil can be measured in the field by earth pressure cells
 - (C) Water in soil pores above the water table is in a state of tension
 - (D) Effective stresses in soil increase during monsoon when the water table rises

P.T.O.

- 34. Which of the following is not the assumption of One-Dimensional consolidation?
 - (A) Consolidation is occurring under small changes in effective stress
 - (B) Stokes' law is valid
 - (C) Volume of soil solids is constant
 - (D) Flow occurs on account of excess pore water pressure
- 35. Study the statements listed below:
 - (1) Negative skin friction developed when the pile is driven through recently deposited clay layer
 - (2) Negative skin friction developed when the pile is driven through a layer of dense sand
 - (3) Negative skin friction developed due to a sudden drawdown of the water table

Out of these statements:

- (A) Only 1 is correct
- (B) Only 2 is correct
- (C) 2 and 3 are correct
- (D) 1 and 3 are correct

- 36. Which of the following statements is FALSE?
 - (A) Determination of χ factor as suggested by Bishop is invalid
 - (B) An increase in suction in the pore water makes the soil skeleton more rigid
 - (C) In the expression for effective stress in partially saturated soil proposed by Lambe and by Bishop, a_w and χ are algebraically equivalent
 - (D) For designing on partially saturated sands, the lower bound solution is obtained by determining and using the properties of saturated sand and using the effective stress analysis
 - 37. What should be the minimum depth of exploration below an isolated footing?
 - (A) equal to width of footing
 - (B) one and half times the width of footing
 - (C) three times the width of footing
 - (D) three times the depth of footing

38.	Whic	h option ma	tches List	I with Lis	st II correct	ly from the given codes?
		List I : I	Orill tool		ant	List II : Drilling action
	(a)	Chopping	bit		(i)	High speed rotation
	(b)	Bailer			(ii)	Chiseling
	(c)	Auger		, 60 mg/	(iii)	Slow speed rotation
	(d)	Diamond 1	bit		(iv)	Up-down action
	Code	es:			158 118 186	794.
		(a)	(b)	(c)	(d)	
	(A)	(ii)	(iv)	(iii)	(i)	
	(B)	(i)	(ii)	(iii)	(iv)	9 10 10 10 10 10 10 10 10 10 10 10 10 10
	(C)	(ii)	(i)	(iv)	(iii)	
	(D)	(ii)	(i)	(iii)	(iv)	
39.	The	contact pre	ssure for a	rigid fou	ndation on	a Cohesionless soil is :
	(A)	Uniform		1	440	
	(B)	Greater at	the centre	and decr	eases towar	ds the outer edge
	(C)	Smallest a	t the centr	e and inc	reases towa	rds the outer edge
*	(D)	Zero at th	e centre ar	nd maxim	um at the o	outer edge
A.E.	(CIVI	L)/DM-2016	—A	16		

40. A point on a machine component has the following state of plane strain:

$$\varepsilon_{xx} = (-)$$
 720 μ , $\varepsilon_{yy} = (-)$ 400 μ , $\gamma_{xy} = 660$ μ , $(\mu = 10^{-6})$

If E = 70 GPa and G = 28 GPa, then the three principal stresses $(\sigma_1, \ \sigma_2, \ \sigma_3 \ in \ MPa)$ are :

- (A) -42.18, -83.26, 0
- (B) -71.68, -53.76, 0
- (C) -42.18, -83.26, -31.36
- (D) 42.18, 83.26, 31.36
- 41. For the given steel shaft shown in Fig., the maximum shear stress due to torsion is found to be 45 MPa. What is the ratio of rate of twist at A to the rate of twist at B:

(A) 1

(B) 0.8

(C) 1.2

(D) 0

	The state of the s
42.	A beam of rectangular section of breadth 15 cm and 30 cm is subjected to
	a bending moment of 4 kN-m. The stress developed at a distance of 15 cm
	from the top face is:
	(A) 50 N/mm (B) Zero
	(C) 100 N/mm (D) None of these
43.	A hollow circular shaft has an external diameter of 120 mm and internal
	diameter 60 mm. If the stresses at inner fiber and outer fiber are found to
	be 20 MPa and 40 MPa. What is the ratio of angle of twist at inner and
	outer fiber ?
14	(A) 2 (B) 0.5
	(C) 1 (D) 1.2
44.	What is the torque to be produced in circular shaft of length 1.8 m and
	radius 10 mm to produce a rate of twist of 0.03183 radians/m? Assume
	$G = 80 \text{ GN/m}^2.$
	(A) 8 N-m (B) 4 N-m
	(C) 80 N-m (D) 40 N-m
45.	In a beam with symmetrical I-cross-section, the maximum shear stress is
	carried:
	(A) The upper flange
	(B) The web
	(C) The lower flange
	(D) The junction of flange and web
A.E	. (CIVIL)/DM-2016—A 18
X. F S	

- 46. Shear flow is defined as :
 - (A) Maximum shear stress at any plane of the beam
 - (B) Longitudinal shear force transmitted across the plane per unit length along the beam
 - (C) Average shear stress across the section of the beam
 - (D) Maximum shear force acting on the beam
- 47. Shear stress on the principal plane is:
 - (A) $\frac{\sigma_x + \sigma_y}{2}$

(B) Zero

(C) $\sigma_x + \sigma_y$

- (D) $\frac{\sigma_x \sigma_y}{2}$
- 48. A prismatic bar having cross-sectional area $A = 1200 \text{ mm}^2$ is compressed by an axial load P = 90 kN. The normal and shear stresses acting on inclined plane p-q cut through the bar at an angle $\theta = 25^{\circ}$ are respectively:

- (A) -61.6 MPa, 28.7 MPa
- (B) 61.6 MPa, -28.7 MPa
- (C) 13.4 MPa, -24.1 MPa
- (D) -13.4 MPa, 24.1 MPa

49. A rigid beam of negligible weight is supported in a horizontal position by two rods of Steel and Aluminum 2 m and 1 m long having cross-sectional areas 1 cm² and 2 cm² and Modulus of elasticity (E) of 200 GPa and 100 GPa respectively. A load P is applied as shown in figure. If the rigid beam is to remain horizontal:

- (A) The load on both the rods should be equal
- (B) The load on aluminum rod should be twice the load on steel
- (C) The load on steel rod should be twice the load carried by aluminum
- (D) The load P must be applied at the center of the beam
- 50. Conditions of symmetry in torsional problem ensures that :
 - Plane sections originally normal to the plane of twist remain plane after twist
 - (ii) There is no lengthening or shortening of the shaft
 - (iii) Straight diameters are carried into straight diameters by the twisting deformation

Which of the above statements are correct?

- (A) (i) and (ii)
- (B) All (i), (ii) and (iii)
- (C) (i) and (iii)
- (D) (ii) and (iii)

51.	Let F be the force, k the spring constant and δ be the deflection, for a linear
	elastic spring, which of the following equations can be written?

(A)
$$\frac{1}{4} k\delta^2 = \frac{F^2}{k}$$
(C)
$$\frac{1}{2} k\delta^2 = \frac{F^2}{2k}$$

(B)
$$\frac{1}{2}k\delta^2 = \frac{\mathbf{F}^2}{k}$$

(C)
$$\frac{1}{2}k\delta^2 = \frac{F^2}{2k}$$

(D)
$$k\delta^2 = \frac{F^2}{4k}$$

Approximate value of Young's Modulus of Elasticity for mild steel is : 52.

100 GPa (A)

(B) 200 MPa

100 MPa (C)

200 GPa (\mathbf{D})

Which of the following statements is incorrect? 53.

- The plane table surveying does not require office work
- Detailed plotting is generally done by radiation
- An inaccessible detail can be located by intersection
- In three-point problem, the station is easily located when it falls on the great circle

Two points are marked on the ground where the line of sight strikes before and after plunging the telescope and a stake is set midway between two points. The process is called:

Balancing-in

Mid-pointing

Double sighting

Lining-in

55.	In a closed traverse, if Algebraic sum of latitudes ΣL = negative and Algebraic	
	sum of departures ΣD = positive, the whole circle bearing of the error of closure	
	will be between:	

	(A)	

(A) 0 to 90°

(B) 90° to 180°

(C) 180° to 270°

- (D) 270° to 360°
- 56. The sensitivity of a bubble can be increased by:
 - (A) increasing the diameter of the tube
 - (B) increasing the radius of curvature of the tube
 - (C) increasing the length of the tube
 - (D) increasing the length of the divisions
- 57. The two-point problem as compared to the three-point problem is:
 - (A) more accurate
 - (B) quicker
 - (C) more laborious
 - (D) cannot be compared
- 58. Pick out the incorrect statement:
 - (A) To check segregation the specific gravity of fine aggregate should not be more than that of coarse aggregate
 - (B) When concrete is to be placed under water more fine aggregate is used to provide cohesiveness
 - (C) For high workability fine aggregate required will be more
 - (D) With small maximum size of coarse aggregate a small proportion of fine aggregate will be required

59.	- 1	ement content % of total aggre						
100		ine aggregate						
	will l	oe approximate	ely:					
	(A)	510 kg			(B)	550 kg		78
XXXI	(C)	600 kg			(D)	450 kg		
60.	Mate	h List I with L	ist II ar	d select t	he co	rrect an	swer using the	codes given
	belov	v the lists:						
		List I			¥		List II	
4.5	(a)	Pigment				(i)	Turpentine	
	(b)	Drier _				(ii)	Iron oxide	
3	(c)	Thinner	•			(iii)	Zinc sulphate	e
	(d)	Extender				(iv)	Aluminum si	licate
	Code	28 :				5, e=		
•	5 10	(a)	(b)	(c)	×	(d)		
	(A)	(iii)	(ii)	<i>(i)</i>	8	(iv)		
	(B)	(ii)	(iii)	(i)		(iv)		*
	(C)	(iii)	(ii)	(iv)		(i) ·		
	(D)	(ii)	(iii)	(iv)		<i>(i)</i>		
A.E.	(CIVI	L)/DM-2016—A	4	. 23	3		<i>1</i> 1	P.T.O.

61.	which of t	hese is <i>not</i> tr	ue about th	ie wire-ga	uged door	's ?	
				1981		•	
	(A) Provid	led to check t	he entry of	mosquito	es, insects	s etc.	e ' '
	(B) It is i	fixed by the n	neans of na	ils and ti	mber bead	ding	
	(C) Consid	sts of 'gun sto	ck stiles'	*:			
	(D) Comm	nonly used in	hotels, swee	et shops e	tc.		
1.9							
62.	Which of th	e following wir	dows should	be provid	ed in a roo	m which ha	s greater
41			10				
	ceiling heig	ght than the	surrounding	rooms?			
, ° 1							
f	(A) Bay w	vindows			X		E 0. 9
5) 141					60		
	(B) Lante	rn windows					
		**				10	
	(C) Clere-	storey window	ť				
				*			
	(D) Corne	r window	2 2 3 3				
		2 9 3 0		-		1.	
63.	When the	deposits of e	fflorescence	is more	than 10	per cent	but less
	than 50 per	r cent of the e	vnosed area	e of brick	the pres	ones of offic	woggon oo
	man oo pe	cont of the c	Aposeu area	s of brick,	the prese	ence or eme	rescence
	is classified	las:					
			d				
	(A) slight			(B) mod	lerate		51.38
				n 8	140		-
	(C) heavy			(D) serie	ous		
ΔE	CIVIL)/DM-	2016 4	0.4	T.			
А.Б. (O1 V 111// D1V1-	2010-A	24			*	

Match List I with List II and select the correct answer using the codes given below the lists:

List I

List II

(Type of Explosive)

(Main Ingredient)

(a) Gun Powder

(i) Cotton saturated with nitric acid

(b) Blasting cotton

(ii) Saltpeter and charcoal

(c) Dynamite

(iii) Nitroglycerine absorbed in sandy earth

(d) Cordite

(iv) Combination of nitroglycerine
and nitrocellulose

Codes :

- (a)
- (b)
- (c)
- (d)

- (A)
- (ii)
- (i)
- (iii)
- (iv)

- (B)
- (iii)
- (i)
- (ii)
- (iv)

- (C)
- (ii)
- (i)
- (iv)
- (iii)

- (D)
- (ii)
- (iii)
- (i)
- (iv)

Reduction in shrinkage and warping (A) Reduction of weight (B) Increase in strength and durability Reduction of natural defects in timber (D) For complete hydration of cement, the water content ratio needed is : 66. less than 0.25 (A) more than 0.25 but less than 0.35 (B) (C) more than 0.35 but less than 0.45 more than 0.45 but less than 0.60 (D) Increase in finances of cement: 67. reduces the rate of strength development and leads to higher shrinkage (A) increases the rate of strength development and reduces the rate of deterioration decreases the rate of strength development and increases the rate of deterioration increases the rate of strength development and leads to higher shrinkage A.E. (CIVIL)/DM-2016—A 26

Which of the following is not an objective of seasoning timber?

Match List I (Property) with List II (Characteristics) and select the correct answer using the codes given below the lists:

List II List I (Characteristics) (Property) Breaks the bond between-Specific heat of an aggregate (i) (a)the aggregate and the paste Is a measure of its heat Thermal conductivity of aggregate (ii)**(b)** capacity Is affected by difference in Thermal expansion (c) (iii) thermal expansion of two different materials Is a measure of its ability Durability of concrete (d) (iv)to conduct heat Codes: (b) (d)(a) (ii)(iv)(A) (i) (iii) (i) (iii) (ii)(iv) (B) (C) (i) (iv)(ii) (iii) (D) (ii)(iii) (i) (iv)

- 69. If the stopping distance and average length of a vehicle are 18 m and 6 m respectively, then the theoretical maximum capacity of a traffic lane at a speed of 10 m/sec is:
 - (A) 1500 vehicles per hour
 - (B) 2000 vehicles per hour
 - (C) 2500 vehicles per hour
 - (D) 3000 vehicles per hour

70. Bitumen of grade 80/100 means:

- (A) its penetration value is 8 mm
 - (B) its penetration value is 10 mm
 - (C) its penetration value is 8 to 10 mm
 - (D) its penetration value is 8 to 10 cm

71. RC-2, MC-2 and SC-2 correspond to:

- (A) same viscosity
- (B) viscosity in increasing order from RC-2 to SC-2
- (C) viscosity in decreasing order from RC-2 to SC-2
- (D) none of the above

75.	The	method of design	n of flexible pa	aveme	nt as recomme	ended by IRC is	
	(A)	Group Index me	ethod				
	(B)	CBR method					25
	(C)	Westergaard me	thod				
	(D)	Benkelman bear	m method			A right rest of	4
76.	If a	n ascending grad	ient of 1 in 5	0 mee	ets a descendir	ng gradient of 1	in
	50,	the length of sur	nmit curve for	a sto	pping sight dis	stance of 80 m	will
E , E	be :						
. 5	(A)	zero	x 0 3	(B)	64 m	" ex Eu	
×7.	(C)	80 m		(D)	60 m		
77.	The	surface width of	cracks should	not no	rmally exceed	in c	ase
3	of v	ery aggressive er	nvironment.		THE RESERVE		
Š.	(A)	0.3 mm		(B)	0.1 mm	10.00	
	(C)	3 mm		(D)	0.2 mm		,
78.	Wh	ich one of the fo	llowing is not	corre	ct with respec	t to curtailment	t of
*	bea	ms ?	11	96	1.08		
E .	(A)	Curtailment of t	tension adverse	ly affe	ects the shear s	strength of the be	am
10	(B)	Minimum 1/4th	of the positiv	e rein	forcement need	ds to be provided	l in
		the simply supp	ported beam				
	(C)	Positive reinforce	cement need n	ot be	provided in ca	se of lateral load	ling
	(D)	Diagonal cracks	can be contro	olled b	y providing th	e extra stirrup a	irea
		along each terr	ninated bar	i le			
A.E.	(CIV	IL)/DM-2016—A	30	0		Town	

79:	Except at supports, the bundled bars must terminate at different points separated
	by a distance greater than the diameter of a bar.
	(A) 30 times (B) 47 times
	(C) 20 times (D) 40 times
80.	In the continuous columns, the bending moments due to the loading
	eccentricities on the columns at any floor may be divided equally between
	the columns above and below that floor level, provided that the moment of
	inertia of one column section, divided by its effective length does not exceed
	the corresponding value of the other column.
	(A) 2 times (B) 5 times
	(C) 1.5 times (D) 2.5 times
81.	Which of the following streams is tributary of the Satluj river?
	(A) Between
	(A) Ropa (B) Patsari
	(C) Bata (D) Spin
82.	In which district of H.P. is Kareri lake ?
	(A) Chamba (B) Kangra
	(C) Hamirpur (D) Shimla
A.E.	(CIVIL)/DM-2016—A 31 P.T.O.

83.	Acco	ording to 2011 census the de	ensity of I	population in H.P.	is 123 persons
		as but In how moved die	t: . t C		
	per	sq. km. In how many dis	tricts of	the state it is a	bove the state
	avei	rage ?			
	(A)	5	(B)	6	
	(C)	7	(D)	8	1
	23	- E			
84.	In v	which district of H.P. is Kela	ang Wazir	temple?	, 41 g
	(A)	Lahul-Spiti	(B)	Chamba	
		* Leffe I			
	(C)	Kinnaur	(D)	Kullu	
85.	Who	o was crowned as Miss Tibe	t 2016 ?		
	(A)	Tenzing Sangyi	(B)	Tenzing Dawa	
				56	
	(C)	Dech Wangmo	(D)	Tenzing Markio	
86.	Whe	ere is Jersey cattle breeding	farm in	Mandi District of	H.P. ?
	(A)	Dharampur	(B)	Karsog	
	(C)	Sarkaghat	(D)	Balh	88
A.E.	(CIVI	IL)/DM-2016—A	32	-	

87.	Whi	ich of the followi	ng hydro p	oower proj	ect in H.P. is	in state se	ector ?
	(A)	Sumez		(B)	Budhil		No.
	(C)	Kurmi	1 1 1	(D)	Holi	•	
			44.00				
88.	Whi	ch Raja of Busha	hr princely	state was	s given the tit	le of Chhat	rapati by
	Mug	ghal Emperor Au	rangzeb ?				
			200				
	(A)	Fateh Singh		(B)	Shamsher S	ingh	
	(0)	Value Circl	. 138			AT	
	(C)	Kehri Singh		(D)	Mohinder Si	ngh	2
89.	Whe	en was the Directo	rate of Prim	ary Educat	tion in H.P. re-	named as Di	rectorate
	of E	lementary Educa	ation ?				
	(A)	1984		(B)	1992		7
	(C)	2005		(D)	2007		
90.	Who	was the first Sp	peaker of I	H.P. Vidha	n Sabha cons	stituted in	1952 ?
	(A)	Krishan Chande	er	(B)	Vidya Dhar		
					tanta ar un Man	0 9	
	(C)	Thakur Karam	Singh	(D)	Jaiwant Ran	1	
A.E. (0	CIVII	L)/DM-2016—A	2 B	33	e a		P.T.O.

91.	The	re are two routes to Amarnath S	hrine	in J&K. One is via Baltal. Which
	is th	ne other ?		
	(A)	Via Gulmarg	(B)	Via Bandipora
Si 家	(C)	Via Pahalgam	(D)	Via Bangus
92.	Witl	n which Institute is Gajendra C	hauh	an associated ?
	(A)	Film and Television Institute	(B)	Censor Board
	(C)	ISRO	(D)	СВІ
93.	Whi	ch day is observed as Sanskrit	Day	in India ?
	(A)	August 08	(B)	September 14
5**	(C)	October 02	(D)	November 14
94.	Wit	h which of the following is Dipa	Kar.	makar associated ?
	(A)	Handball	(B)	Basketball
6	(C)	Gymnastics	(D)	Weight lifting
95.	Whi	ich of the following is National	Monu	ment of India ?
	(A)	Taj Mahal	(B)	Lal Qila (Red Fort)
	(C)	India Gate	(D)	Qutb Minar
A.E.	(CIVI	L)/DM-2016—A 34		

96.	Wh	o defeated Roger	Federer in 2016 V	Wimbledon semi-final?	
	(A)	Andy Murray	(В	B) Milos Raonic	i.
	(C)	Thomas Berdych	(D	D) Novak Djokovic	
97.	Whi	ich of the followin	g is <i>not</i> a membe	er of the United Nations (UNO)	?
	(A)	Taiwan	. (В	B) Montenegro	
	(C)	Macedonia	(D	D) East Timor	28
98.	Wha	at is the capital o	f Palestine?		
	(A)	Pristenia	(B)	3) Nicosia	
	(C)	Malabo	(D)	D) Ramalla	
99.	Whi	ch of the following	g is authored by l	Elie Wiesel ?	1 yr 1
	(A)	A Voice For Free	dom (B)	3) Night	
	(C)	Blink	1 8b)	Darkness Visible	
100.	Whie	ch country is calle	ed the 'Sugar Bow	wl of the World'?	
	(A)	Brazil	(B)		100
	(C)	Malta	(D)		
A.E.	(CIVII	L)/DM-2016—A	35	Р.Т	.0.