

Time Allowed . 9 Howel

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

TEST BOOKLET SERIES

TEST BOOKLET AE(C)PWDHIMUDA-2016

	INSTRUCTIONS
1.	Immediately after the commencement of the examination, you should check that test booklet does not have any unprinted or torn or missing pages or items, etc. If so, get it replaced by a complete test booklet.
2.	Encode clearly the test booklet series A, B, C or D as the case may be in the appropriate place in the answer-sheet.
3.	Write your Roll Number only in the box provided alongside. Do not write anything else on the Test Booklet.
4.	This Test Booklet contains 100 items (questions). Each item comprises four responses (answers). Choose only one response for each item which you consider the best.
5.	After the candidate has read each item in the Test Booklet and decided which of the given responses is correct or the best, he has to mark the circle containing the letter of the selected response by blackening it completely with Black or Blue ball pen. In the following example, response "C" is so marked:

6. Do the encoding carefully as given in the illustrations. While encoding your particulars or marking the answers on answer sheet, you should blacken the circle corresponding to the choice in full and no part of the circle should be left unfilled. After the response has been marked in the ANSWER SHEET, no erasing/fluid is allowed.

(B)

7. You have to mark all your responses ONLY on the ANSWER SHEET separately given according to 'INSTRUCTIONS FOR CANDIDATES' already supplied to you. Responses marked on the Test Booklet or in any paper other than the answer sheet shall not be examined.

 All items carry equal marks. Attempt all items. Your total marks will depend only on the number of correct responses marked by you in the Answer Sheet. There will be no negative marking.

 Before you proceed to mark responses in the Answer Sheet fill in the particulars in the front portion of the Answer Sheet as per the instructions sent to you.

 If a candidate gives more than one answer, it will be treated as a wrong answer even if one of the given answers happens to be correct.

11. After you have completed the test, hand over the Answer Sheet only, to the Invigilator.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

AE(C)PWDHIMUDA-2016

Time Allowed: 2 Hours

[Maximum Marks: 100

- Consider the following unit process commonly used in water treatment; Rapid mixing (RM), Flocculation (F), Primary sedimentation (PS), Secondary sedimentation (SS), Chlorination (C), and Rapid sand filtration (RSF). The order of these unit processes (first to last) in conventional water treatment plant is:
 - (A) $PS \rightarrow RSF \rightarrow F \rightarrow RM \rightarrow SS \rightarrow C$
 - (B) $PS \rightarrow F \rightarrow RM \rightarrow RSF \rightarrow SS \rightarrow C$
 - (C) $PS \rightarrow F \rightarrow SS \rightarrow RSF \rightarrow RM \rightarrow C$
 - (D) $PS \rightarrow RM \rightarrow F \rightarrow SS \rightarrow RSF \rightarrow C$
- Match List-I with List-II and select the correct answer using the codes given below the lists:

List-I (Bacteria)

List-II (Process)

- (a) Optimum quantity of alum is (1) Winkler Test Method determined by
- (b) Zero hardness of water is archived (2) Jar Test Method by
- (c) Dissolved Oxygen is determined (3) Ion-exchange Treatment method by
- (d) Sewage treatment in an oxidation (4) Algal-bacterial symbiosis method pond is accomplished by

Codes :

- (a) (b) (c) (d)
- (A) (1) (2) (4) (3)
- (B) (2) (3) (1) (4)
- (C) (4) (3) (2) (1)
- (D) (1) (3) (2) (4)

3.	flow	of 72	$0 \text{ m}^3/\text{h}$	nour. I	he surfac	ce load	× 1.	5 m × 0.8 m liquid depth has a rate and detention time of the grit				
	(A)	4000	m ³ /h	our/m ²	and 1.2	minu	tes	for - strokense - com				
	(B) 40000 liters/m ² and 40 minutes											
	(C)	(C) 40 m ³ /hour/m ² and 12 minutes										
	(D)	4000	0 liter	s/m ²	and 1.2 n	ninute	s					
4.	A certain waste has a BOD of 162 mg/L and its flow is 1000 m ³ /day. If the domestic sewage has a BOD of 80 g/capita, then the population equivalent of the waste would be:											
	(A)	2025					(B)	1296				
	(C)	1296	0			1	(D)	150				
5.					-II and se	rrect answer using the codes given						
		List-I (Air pollutant)						List-II (Environmental effect)				
	(a) Carbon monoxide						(1)	Respiratory distress for living beings				
Star	(b)	b) Particulate matter						Chemical reaction with hemoglobin in blood				
	(c)	Nitro	ogen o	xides			(3)	Reduction in visibility and aeroallergens carrier				
	(<i>d</i>)	Sulp	hur di	ioxide		19	(4)	Photochemical smog in atmosphere				
	Codes:											
	4.	(a)	(b)	(c)	(d)							
	(A)	(2)	(3)	(1)	(4)	4	-					
	(B)	(3)	(2)	(4)	(1)							
	(C)	(2)	(3)	(4)	(1)							
	(D)	(3)	(2)	(1)	(4)			- Complete Method of the second				
AECC	PWI	OHIM	UDA-2	2016—	В	3 ·		P.T.O.				
	4.	flow char (A) (B) (C) (D) 4. A cond dom of the (A) (C) 5. Mathebelo (a) (b) (c) (d) (Cod (A) (B) (C) (D)	flow of 72 chamber (A) 4000 (B) 4000 (C) 40 m (D) 4000 4. A certain domestic of the war (A) 2025 (C) 1296 5. Match List below the List (a) Carb (b) Part (c) Nitro (d) Sulp Codes: (a) (A) (2) (B) (3) (C) (2) (D) (3)	flow of 720 m ³ /h chamber would (A) 4000 m ³ /h (B) 40000 liter (C) 40 m ³ /hour (D) 40000 liter 4. A certain waste domestic sewage of the waste wo (A) 2025 (C) 12960 5. Match List-I with below the lists List-I (Air (a) Carbon mo (b) Particulate (c) Nitrogen of (d) Sulphur di Codes: (a) (b) (A) (2) (3) (B) (3) (2) (C) (2) (3) (D) (3) (2)	flow of 720 m³/hour. The chamber would be resulted to the chamber of the waste has a soft the waste would be resulted to the chamber of the waste would be resulted to the chamber of the waste would be resulted to the chamber of the waste would be resulted to the waste	flow of 720 m³/hour. The surface chamber would be respectively (A) 4000 m³/hour/m² and 1.2 (B) 40000 liters/m² and 40 m (C) 40 m³/hour/m² and 12 m (D) 40000 liters/m² and 1.2 m (D) 40000 liters/m² and 1.2 m (D) 40000 liters/m² and 1.2 m (E) 4. A certain waste has a BOD of domestic sewage has a BOD of domestic sewage has a BOD of the waste would be: (A) 2025 (C) 12960 5. Match List-I with List-II and separate (a) (b) Particulate matter (a) Carbon monoxide (b) Particulate matter (c) Nitrogen oxides (d) Sulphur dioxide Codes: (a) (b) (c) (d) (A) (2) (3) (1) (4) (B) (3) (2) (4) (1) (C) (2) (3) (4) (1)	flow of 720 m³/hour. The surface load chamber would be respectively: (A) 4000 m³/hour/m² and 1.2 minutes (B) 40000 liters/m² and 40 minutes (C) 40 m³/hour/m² and 12 minutes (D) 40000 liters/m² and 1.2 minutes (D) 40000 liters/m² and 1.2 minutes (E) 4. A certain waste has a BOD of 162 m domestic sewage has a BOD of 80 g/of the waste would be: (A) 2025 (C) 12960 5. Match List-I with List-II and select the below the lists: List-I (Air pollutant) (a) Carbon monoxide (b) Particulate matter (c) Nitrogen oxides (d) Sulphur dioxide Codes: (a) (b) (c) (d) (A) (2) (3) (1) (4) (B) (3) (2) (4) (1) (C) (2) (3) (4) (1) (D) (3) (2) (1) (4)	flow of 720 m³/hour. The surface loading chamber would be respectively: (A) 4000 m³/hour/m² and 1.2 minutes (B) 40000 liters/m² and 40 minutes (C) 40 m³/hour/m² and 12 minutes (D) 40000 liters/m² and 1.2 minutes 4. A certain waste has a BOD of 162 mg/L adomestic sewage has a BOD of 80 g/capit of the waste would be: (A) 2025 (B) (C) 12960 (D) 5. Match List-I with List-II and select the cobelow the lists: List-I (Air pollutant) (a) Carbon monoxide (1) (b) Particulate matter (2) (c) Nitrogen oxides (3) (d) Sulphur dioxide (4) Codes: (a) (b) (c) (d) (A) (2) (3) (1) (4) (B) (3) (2) (4) (1) (C) (2) (3) (4) (1) (D) (3) (2) (1) (4)				

				59 N	
6.	Two	footings, one circular and the	other	er strip, are founded on the surface	4
	of a	purely Cohesionless soil. Diame	eter of	of the circular footing and width of	£
	strip	p footing is same. Then, the ratio	of ul	ultimate bearing capacity of circular	
	to s	trip footing is :			
	(A)	0.75	(B)	3) 0.60	
	(C)	1.20	(D))) 1.33	
7.	If a	soil is having liquid limit of 65	6% an	and plasticity index of 50%, the soi	l
	can	be classified as:		all and the second seco	
	(A)	High plastic clay	(B)	B) High plastic silt	
	(C)	Low plastic silt	(D)	D) Low plastic clay	
8.	Whi	ich of the following is true ?			
	(A)	The large the coefficient of	conso	solidation, the longer it takes for	r
		consolidation to occur	• 3		
	(B)	Pore pressure parameter A is	a cor	onstant for a soil	
	(C)	A saturated loose sand sample	redu	luces in volume when sheared under	r
		undrained conditions			
	(D)	Saturated sand can exhibit ar	n ang	ngle of shearing resistance of zero	
AE(C	C)PW	DHIMUDA-2016—B 4		- 1/2 V	

9.	Study the statements li	sted below:	
	(1) Area ratio should	be low	
	(2) Cutting edge shou	ld be thick	
1		and a second	
il.	(3) Outside clearance	should be low	

	Which of these stateme	nts is/are correct for a good qu	iality soil samples ?
E.	(A) (1) and (2)	(B) (1) and (3)	
	(C) (2) and (3)	(D) Only (1)	
	1 2 * 11	* AL	
10.	A group of nine piles 1	2 m long and 250 mm in diar	meter is arranged in
1	a square form in clay hav	ring undrained shear strength of	30 kN/m ² . Neglecting
	bearing at tip of the pile	s and taking adhesion factor as	0.9, ultimate capacity
	of all piles in individua	l action is:	
	(A) 2045 kN	(B) 2290 kN	
	(C) 2545 kN	(D) 2690 kN	
AE(C	DPWDHIMUDA-2016—B	5	P.T.O.

*	
11.	If the unit weight (γ) of sand and clay samples are increased by 10% which
	of the following is true?
	(A) More volume reduction occurs in sand
	(B) More volume reduction occurs in clay
	(C) Equal volume reduction in sand and clay
165	(D) Volume reduction is independent of γ
12.	Which of the following can be considered as quick clay?
	(A) Sensitivity = 0 (B) Sensitivity = 1
	(C) Sensitivity = 100 (D) Sensitivity = ∞
13.	The permeability of coarse grained soil depends on :
	(A) Effective size particle (B) Mean size particle
	(C) Coefficient of Uniformity (C_u) (D) Coefficient of Curvature (C_c)
14.	Match the field equipment Drum roller (K), Rubber tire roller (L), Sheep foot
	roller (M), Vibratory roller (N) with corresponding laboratory equipment
	Vibratory compaction (P), Impact compaction (Q), Kneading compaction (R),
- *	Static compaction (S):
	(A) K-S; L-R; M-Q; N-P (B) K-S; L-Q; M-R; N-P
	(C) K-R; L-S; M-Q; N-P (D) K-R; L-Q; M-S; N-P
AE(C)PWDHIMUDA-2016—B 6

15.	Whi	ch op	tion m	atches	List-I w	rith List-II	correctly from the given codes?				
		Soil	Туре				Characteristic				
	(a)	Oolit	tic San	d		(1)	Underconsolidated				
	(b)	Biog	enetic	Sand		(2)	Rounded				
	(c)	Calc	areous	Clay		(3)	Cemented				
	(d)	Soft	Clay			(4)	Crushing				
	Cod	es :									
		(a)	(b)	(c)	(d)						
	(A)	(2)	(4)	(3)	(1)						
	(B)	(2)	(1)	(3)	(4)						
	(C)	(2)	(1)	(4)	(3)						
~	(D)	(2)	(3)	(4)	(1)						
16.	If w	ater t	able is	high i	n stiff cl	ay, which o	of the following stabilizing method				
	shou	ıld be	follow	red ?		10					
	(A) Bore hole be kept full of water to a level higher than ground water table										
	(B) Bore hole be kept full of drilling mud to a level higher than ground water table										
	(C) Bore hole be cased with pipe casing										
	(D) Nothing needs to be done										
AE(C	PWI	HIM	UDA-2	016—I	3	7	P.T.O.				

17.	For two-dimensional flow through a constant head permeameter, the flow net								
	will alter if:								
	(A) Soil in the permeameter is altered								
	(B) Head causing flow is altered								
	(C) Flow direction is reversed								
	(D) Permeameter length is changed								
18.	The permeability of sand in horizontal and vertical directions are 3×10^{-3}								
	cm/sec and 1×10^{-3} cm/sec and the permeability of clay in horizontal and								
	vertical directions are 9×10^{-7} cm/sec and 3×10^{-9} cm/sec, then the ratio								
	of seepage loss per meter length of dam in sand to clay is:								
	(A) 1/3 (B) 3								
	(C) 1/9 (D) 9								
19.	The normal stress and shear stress at failure on the failure plane are								
	10 kPa and 4 kPa respectively, then the angle of internal friction of the soil								
	and the angle of the inclination of the failure plane to the major principal								
2	plane are								
	(A) 21°48', 55°54' (B) 55°54', 21°48'								
	(C) 10°54', 50°27' (D) 50°27', 10°54'								
AE	(C)PWDHIMUDA-2016—B 8								

50	
20	A normally consolidated clayey soil failed under a major principal stress of
	300 kPa with a corresponding minor principal stress of 100 kPa. If, for the
	same soil, the minor principal stress had been 200 kPa, the major principal
	stress $\phi = 30^{\circ}$ will be:
	(A) 300 kPa (B) 400 kPa
	The state of the s
	(C) 600 kPa (D) 900 kPa
21.	In a triaxial shear test conducted on a soil sample is having cohesion of
	12 kPa and the angle of shearing resistance of 36°, if the cell pressure is
	200 kPa, the deviator stress at failure will be:
	(A) CIETID (D) CIETID
	(A) 617.5 kPa (B) 817.5 kPa
a.	(C) 770.37 kPa (D) 47.1 kPa
22.	If a sample of clay has a cohesive strength of 80 kPa and an angle of shearing
	resistance of 10°, the shear strength of clay at a normal stress of 100 kPa
0.72	will be:
	(A) 97.63 kPa (B) 98.48 kPa
	(C) 78.78 kPa (D) 95.34 kPa
AFC	C)PWDHIMUDA-2016—B 9 P.T.O.
1. W	

- 23. Drainage is not permitted during application of cell pressure (before application of deviator stress) in :
 - (1) Unconsolidated undrained test
 - (2) Consolidated undrained test
 - (3) Consolidated drained test

Out of these statements:

- (A) (1) and (2) are correct
- (B) (1) and (3) are correct
- (C) (2) and (3) are correct
- (D) Only (1) is correct
- 24. For the beam shown in figure, bending moment at sections 1-1 and 2-2 respectively are:

- (A) +3000 N-m, -3000 N-m
- (B) -3000 N-m, 0
- (C) -3000 N-m, +3000 N-m
- (D) +3000 N-m,

25.	Ductility de	pends on :				
	(i) Tempe	rature of the structu	ire		a springer	
	(ii) Size of	f the structure	34	ve in	and the	
	(iii) Applie	d loading time				
	Which of th	ne above is/are true	?		4.0.00	•
	(A) (i) and	l (iii)	(B)	(i) and (ii)		
	(C) (i) onl	y	(D)	All of these		
26.	For a bean	having cross-section	n as T, w	hich is a corre	ect statement ?	
	(A) Shear	stress variation is pa	rabolic be	low Neutral ax	is and normal st	ress
	is line	ear below Neutral ax	cis.		1000	
	(B) Shear	stress variation is l	inear and	normal stres	s is parabolic be	elow
	Neutr	al axis.				
	(C) Both	shear and normal st	resses are	linear along	the cross-section	1.
	(D) Both	shear and normal st	resses are	parabolic alo	ng the cross-sect	tion.
27.	The ratio o	f modulus of rigidity	and modul	us of elasticity	(G/E) for any ela	astic
	isotropic m	naterial is:				
	(A) less t	han 1/2	(B)	less than 1/3		
	(C) more	than 1/3	(D)	Both (A) and	d (C)	
AE(C	PWDHIMU	JDA-2016—B	11 .		P.	T.O.

25.

- 28. Which quantity will not be zero for a plane strain problem in x-y plane?
 - (A) Shear strain in x-z plane
- (B) Normal strain in z direction
- (C) Normal stress in z direction
- (D) Shear stress in y-z plane
- 29. If E, G, K and μ represent the elastic modulus, shear modulus, bulk modulus and Poisson's ratio respectively of a linear elastic, isotropic and homogeneous material, and if you need to express the stress-strain relationships completely for this material, at least:
 - (A) All the four must be known
 - (B) E, G and μ must be known
 - (C) E, K and µ must be known
 - (D) any two of the four must be known
- 30. The displacement δ_i , in line with force F_i is given by :
 - (A) First derivative of total energy with respect to F_i
 - (B) First derivative of potential energy with respect to F_i
 - (C) First derivative of internal energy with respect to Fi
- (D) First derivative of complementary energy with respect to \mathbf{F}_i AE(C)PWDHIMUDA-2016—B 12

31.	Two	different	sets	of	forcing	systems	are	said	to	statically	equivalent	if,
-----	-----	-----------	------	----	---------	---------	-----	------	----	------------	------------	-----

- They produce same shear force and bending moment in a particular section.
- (ii) They require same set of external forces to reduce each system to equilibrium.
- (iii) They generate identical reactions with respect to direction and magnitude.
- (iv) They produce same deflection in any given section of the beam.

Which of the above are true?

(A) (i) and (ii)

(B) (ii) and (iii)

(C) (i) and (iv)

- (D) (iii) and (iv)
- 32. An external force of 1 N is applied on the block of 1 kg as shown in figure. The magnitude of the friction force F_s is (where, $\mu = 0.3$, g = 10 m/s²):

(A) 0.3 N

(B) 0.1 N

(C) 3.0 N

- (D) 1.0 N
- 33. A deformable body is under the action of external forces (F_i). The external forces satisfy the following conditions with respect to an inertial frame:
 - (i) $\Sigma \mathbf{F}_i = 0$
 - $(ii) \quad \Sigma r_i \times \mathbf{F}_i = 0$

These conditions are:

- (A) necessary and not sufficient for equilibrium
- (B) sufficient for equilibrium
- (C) necessary and sufficient for equilibrium
- (D) none of the above

34. A material yields under the following state of plane stress shown in figure, as per Von Mises criterion, the yield stress of the material is:

(A) 20 MPa

(B) 74.16 MPa

(C) 50 MPa

(D) 88.88 MPa

35. A straight bar which is fixed at the ends A and B and having elastic modulus (E) and cross-sectional area (A), is subjected to a load P = 120 N at C as shown in figure. The reactions at the ends are:

- (A) 40 N at A, 80 N at B
- (B) 30 N at A, 90 N at B
- (C) 80 N at A, 40 N at B
- (D) 60 N at A, 60 N at B

36. A cantilever of length 1.5 m is loaded with a concentrated load 'W' at the unsupported end. The bending moment at the centre of the beam is 2 kNm. What is the magnitude of the load 'W'?

(A) 1.333 kN

(B) 3 kN

(C) 2.666 kN

(D) Zero

37. Choose the correct combination for the given Table:

Stress-strain Graph

Material

(I) Elastic-Plastic

(II) Rigid Plastic

(III) Elastic-Perfectly Plastic

(IV) Perfectly Plastic

Codes:

- (P) (Q) (R) (S)
- (A) (IV) (III) (II) (I)
- (B) (IV) (I) (III) (II)
- (C) (I) (II) (III) (IV)
- (D) (III) (I) (IV) (II)

38.	As per Indian Roads Congress recommendations, the rate of change of radial
	acceleration (C) in m/sec2 for highways varies according to the relation :

(A)
$$C = \frac{65 + V}{75}$$

(B)
$$C = \frac{75}{65 + V}$$

(C)
$$C = \frac{85 + V}{95}$$

(D)
$$C = \frac{95}{85 + V}$$

- 39. A four-lane divided highway, with each carriageway being 7.0 m wide, is to be constructed in a zone of high rainfall. In this stretch, the highway has a longitudinal slope of 3% and is provided a camber of 2%. What is the hydraulic gradient on this highway in this stretch?
 - (A) 3.0%

(B) 3.6%

(C) 4.5%

- (D) 4.0%
- 40. Which one of the following items of hill road construction does not help in the prevention of landslides in the monsoon season?
 - (A) Retaining walls

(B) Catch water drains

(C) Breast wells

- (D) Hair-pin bends
- 41. The group index for a soil, whose liquid limit is 40 percent, plasticity index is 10 percent and percentage passing 75 micron IS Sieve is 35, is:
 - (A) Zero

(B) 3

(C) 5

(D) 7

42.	The	aggregates required	for one kilon	neter	r length of wa	iter bound macada	am						
	road	d per metre width an	d for one cer	ntim	eter thicknes	s is:							
	(A)	8 cubic metre		(B)	10 cubic me	tre							
	(C)	12 cubic metre		(D)	15 cubic me	tre							
43.	As t	far as serviceability o	riteria is con	cerr	ned, if the ma	aximum deflection	of						
	each	of the flexural mem	bers (span 5	m a	and overall de	epth 500 mm) is le	ess						
	thar	n, t	hen, it may n	ot b	e required to	check the recovery	of						
	defl	ection.											
	(A)	2 mm		(B)	300 mm								
	(C)	12.5 mm		(D)	10 mm								
44.	A b	eam shall be deeme	d to be a de	eep 1	beam when t	the ratio of effect	ive						
	span to overall depth is less than and for simply												
	supported beam and cantilever beam, respectively.												
	(A)	7, 26		(B)	2.5, 2.0								
	(C)	2.0, 2.5	13	(D)	26, 7.0								
4 5.	She	ar failure at sections o	f beams with	out	shear reinforc	ement normally occ	cur						
	on p	on plane inclined at an angle to the horizontal.											
27	(A)	30°		(B)	45°								
	(C)	60°		(D)	20°								
AE(C		DHIMUDA-2016—B	17	(D)	20	P.T	.0.						
					9 0								

46.	For an industrial building, the allowable vertical deflection of a cantilever
	beam of span 5 m supporting the brittle cladding and subjected to live
	load is
	(A) 41.66 mm (B) 33.33 mm
	(C) 10 mm (D) 20 mm
4 7.	Which of the following types of levelling cannot be done with a dumpy
	level ?
	(A) Differential Levelling (B) Reciprocal Levelling
	(C) Trigonometric Levelling (D) Profile Levelling
48.	A bubble tube with divisions of 2 mm and a radius of 10 m has the sensitivity
	of about:
	(A) 40" (B) 80"
	(C) 20" (D) 2"
49.	Which of the following statements is correct?
	(A) Closed contours with higher values inwards represent a depression
	(B) The contour lines crossing a valley have higher values on the convex
	side
	(C) Profile levelling is done for determining the contours
	(D) The horizontal and vertical scales in a longitudinal section are generally
. 1	equal
AE(C	PWDHIMUDA-2016—B 18

46.

50.	The	proces	s of de	etermi	ning	the plo	tted p	osition of the station occupied by	
								towards points of known location	
	is ca	lled :							
	(A)	Resec	tion		41		(B)	Intersection	
	(C)	Orien	tation			100	(D)	None of these	
51.	Mate	h List	-I with	List-l	II and	l select	the co	rrect answer using the codes given	
1.5	belov	w the	lists :						
			Li	st-I				List-II	
		(Ingr	edien	ts of	bric	k eart	h)	(Property)	
	(a) ·	Silica	-				(1)	imparts durability, prevents shrinkage	
- 1	(b)	Alum	ina	2	9		(2)	causes the clay to softens and reduces warping	
	(c)	Lime				W 25	(3)	renders clay plastic	
	(d)	Magr	nesia		- 2		(4)	lowers fusing point	
	Cod	es :							
		(a)	(b)	(c)	(d)	×			
	(A)	(1)	(3)	(2)	(4)				
	(B)	(1)	(3)	(4)	(2)				
	(C)	(4)	(3)	(1)	(2)	Ř.			
	(D)	(1)	(4)	(2)	(3)	te			
AE(0	C)PW	DHIM	UDA-2	016—	В	1	9	P.T.O	
		(6)							

52.	In so	me brick m	asonry	walls,]	patches	of w	hitish crystals were found on the	3			
	expos	sed surfaces s. Which an	, also ch nong th	ipping e follov	and spa wing are	lling e the	of bricks took place from the same e causes of these defects?	2			
	(1)										
* .	(2)	Over-loadir	ng of th	e walls	S	F5					
	(3)	Sulphate a	ttack								
	(4)	Efflorescen	ce		4.5						
	Code	es:									
	(A)	(1) and (2)			ď.	(B)	(2) and (3)				
	(C)	(2) and (4)) -			(D)	(3) and (4)				
- 53	. Mat	ch List-I wi	th List-	II and	select th	ne co	errect answer using the codes give	n			
F	belo	w the lists	:								
		List-I					List-II				
	(a)	Smith tes	t			(1)	Frost resistance				
. 13	(b)	Brard's te	st	11971		(2)	Durability				
	(c)	Hardness	test		-	(3)	Devil's				
	(d)	Attrition	test			(4)	Moh's scale				
	Coc	des :									
		(a) (b)	(c)	(d)							
	(A)	(1) (2)	(4)	(3)							
	(B)	(3) (1)	(4)	(2)	3						
	(C)	(2) (4)	(1)	(3)							
	(D)	ED MEETING STEELED	(4)	(3)							
Α	E(C)PW	VDHIMUDA	2016—	-В	20	N		¥			

54.								in a direction perpendicular to the to the grain falls in the range:			
	(A)	1/20	to 1/1	.2			(B)	1/3 to 1/2			
	(C)	2 to	3				(D)	5 to 10			
55.	Whi	ch of	the fo	llowin	g pairs	is not	matc	thed correctly ?			
		Cen	nent t	est			App	paratus			
	(A)	Fine	ness				Nur	se and Blains			
	(B)	Con	sistenc	у			Vica	at			
	(C)	Sour	ndness				Le-Chatelier				
	(D)	Sp.	Gravit	у		19	Lea	and Nurse			
56.								t-II (Property/characteristics) and select given below the lists :			
25	List-I							List-II			
	(Type of cement)							(Property/characteristics)			
	(a)	High strength Portland cement						Should not be used with any admixture			
	(b)	Supe	er sulp	hated	cemen	t	(2)	Is extremely resistant to chemical attack			
	(c)	High alumina cement during						Gives a higher rate of heat development hydration of cement			
	(d)	Rap	id har	dening	Portla	and	(4)	Has a higher content of tricalcium			
		ceme	ent sili	icate		4					
	Cod	es :									
		(a)	(b)	(c)	(<i>d</i>)						
	(A)	(3)	(2)	(1)	(4)						
	(B)	(3)	(1)	(2)	(4)						
	(C)	(4)	(1)	(2)	(3)						
	(D)	(4)	(2)	(1)	(3)						
AE(C)PWI	OHIM	UDA-2	2016—	В	21	8 (5	P.T.O.			

- 57. Consider the following statements:
 - (1) Tests on cement paste to determine initial and final setting times are done at normal consistency condition.
 - (2) Low heat cement has a high percentage of tri-calcium aluminate.
 - (3) High early strength Portland cement contains a large percentage of tricalcium silicate and lower percentage of dicalcium silicate.

Which of these statements are correct?

(A) (1) and (2)

(B) (1) and (3)

(C) (2) and (3)

- (D) (1), (2) and (3)
- 58. Which one of the following statements regarding the cement fineness is not correct?
 - (A) Fine cement is more liable to suffer from shrinkage cracking than a coarse cement.
 - (B) Fine cement will show faster rate of hardening than coarse cement.
 - (C) Fine cement shows faster rate of heat evolution and total quantity of heat evolved is much larger than coarse cement.
- (D) Fine cement shows the same setting time as coarse cement.

1		三百				5.0		_6			
59.	Whic	h of t	he foll	owing	coarse	aggreg	gate r	requires minimum	cement paste?		
	(A)	Round	ded			c	(B)	Irregular			
	(C)	Angu	lar				(D)	Flaky	<u>.</u>		
60.	Mate	h List	-I with	List-	II and	select t	he co	rrect answer using	the codes given		
	belov	w the	lists :		60			a n			
		List-	I			List-II					
	(a)	Decid	luous	N.			(1)	Soft wood			
沙 程	(b)	Coni	fer	0			(2)	Hard wood			
	(c)	Endo	genou	s			(3)	Eucalyptus	(6		
	(<i>d</i>)	Exog	enous	æ			(4)	Bamboo	•		
	Cod	es :	%						⊕ w		
	\$05	(a)	(b)	(c)	(d)	*		30 (40) 9 (4)			
	(A)	(1)	(2)	(3)	(4)						
	(B)	(2)	(1)	(3)	(4)		= 10		•		
	(C)	(2)	(1)	(4)	(3)						
	(D)	(1)	(2)	(4)	(3)						
AĘ	(C)PW	DHIM	UDA-	2016—	В	. 23	3		P.T.O		

61.	Who	co-authored William Moorcraft's	acco	ount of his travels in Shimla and
	Panj	al Hill States ?		
	(A)	W.G. Archer	(B)	G. Campbell
	(C)	Trebeck George	(D)	H. Collet
62.	Whi	ch river's tributaries are Baljedi	and	Chirchind streams ?
	(A)	Chenab	(B)	Ravi
	(C)	Beas	(D)	Yamuna
63.	Wha	at is the architectural style of C	hago	an temple in Kinnaur?
	(A)	Pagoda	(B)	Pentroof
	(C)	Pyramid	(D)	Cone-shaped
64.	In v	which of the following is sen dan	nce p	opular ?
	(A)	Balh Valley of Mandi	(B)	Doon Valley of Sirmaur
	(C)	Pangi Valley of Chamba	(D)	Kunihar Valley of Solan
65.	Whi	ich raja of Bushahr helped Tibe	t in	Tibeto-Ladakhi Mughal War ?
	(A)	Ram Singh	(B)	Hari Singh
	(C)	Vijay Singh	(D)	Kehri Singh
AE(C)PW	DHIMUDA-2016—B 24		4

66.	When	n was Wazir Ram Singh	of Nurpur	princely state captured b	y the
	Britis	sh and banished?			
	(A)	1837 AD	(B)	1842 AD	
il-	(C)	1846 AD	(D)	1849 AD	
67.	Whic	ch was the last important bu	ilding buil	lt by the British in Shimla a	round
	1925	AD ?			
4	(A)	Council Chamber	(B)	Ellerslie	
	(C)	Barnes Court	(D)	Red Roof	
68.	Acco	ording to 2011 census which	h district	of HP has the lowest Sch	eduled
	Trib	es population ?			
	(A)	Bilaspur	(B)	Una	
	(C)	Hamirpur	(D) .	Mandi	
69.	Whi	ch hydro-power project is	under prefe	Ceasibility stage in H.P. ?	
	(A)	Lujai	(B)	Triveni Mahadev	
	(C)	Chanju	(D)	Gyspa	
70.	Wh	ich agency has been asked	to supply	and instal the video confe	rencing
	faci	lity in H.P. ?			
	(A)	M/s Wipro Ltd.	(B)	M/s Bharti Airtel	
	, (C)	M/s IL and FS Technolog	gies (D)	None of these	elle suit
AE(C)PW	DHIMUDA-2016—B	25		P.T.O.
72					

71.	Who	is Sarbananda Sonowal?			
100	(A)	Chief Minister of Kerala	(B)	Governor of Nagaland	
	(C)	Union Minister of Steel	(D)	None of these	
72.	Who	was the head of National	Kisan Co	ommission ?	al' English Sungar
	(A)	Sharad Joshi	(B)	Mahinder Singh Tikai	t
	(C)	M.S. Swaminathan	(D)	Suresh Chandel	
73.	At v	which place is Banda Singh	Bahadur	Memorial coming up in	Punjab?
	(A)	Ghuman	(B)	Chappar Chiri	3 A 4
	(C)	Sahnewal	(D)	Dharam Kot	*
74.	Who	was the Chairman of 7th	Pay Com	mission ?	
	(A)	Arun Jaitley	(B)	Arvind Panagariya	
. 3	(C)	B.N. Sirikrishna	(D)	Ashok Kumar Mathur	
75.	Wha	t award was given to Neerja	Bhanot p	oosthumously at the Brit	ish House
	of C	ommons around July 02, 20	016 ?		
	(A)	Bharat Gaurav	(B)	Bharat Abhiman	
	(C)	Bharat Ki Shan	(D)	Bharat Mann	
AE(C	PWD	HIMUDA-2016—B	26		

76.	Whie	ch country's capital is Abu Dh	abi ?	
	(A)	Saudi Arabia	(B)	United Arab Emirates
	(C)	Oman	(D)	Kuwait
		Age of the Park Time		
77.	To v	which country does Milos Raor	nic who	defeated Roger Federer in 2016
	Win	abledon semi-final belong?		
			4 1	
	(A)	Canada	(B)	Serbia
				C 1 D 11'-
	(C)	Germany	(D)	Czech Republic
		The state of the s		
78.	Wha	at is the official language of I	srael ?	
- 0	(A)	English	(B)	Hebrew
8	(C)	Persian	(D)	Latin
79.	Wh	ich of the following is not a m	nember	of the United Nations (UNO) ?
	(A)	Kosovo	(B)	Serbia
	(C)	Montenegro	(D)	Macedonia
80.	Wit	th which of the following is Ju	ılian As	ssange associated ?
	(A)	Human Rights Watch	(B)	Transparency International
	(C)	Wikileaks	(D)	Redcross
AE(C)PW	DHIMUDA-2016—B	27	P.T.O
		45-10-10-10-10-10-10-10-10-10-10-10-10-10-		

81.	Wha	it fraction of	volume	of solid pied	e of n	netal of	specific g	ravity 6.	20 floa	ats
	abov	ve the surface	ce of a co	ontainer of	Mercu	ry with	specific g	ravity o	f 13.6	0?
	(A)	0.455			(B)	0.545				
	(C)	0.223	31.		(D)	1.0				
82.	A so	olid cylinder	of diame	eter 3 m ha	as a h	eight of	2 m. Wh	nat woul	d be t	he
	met	acentric hei	ght of cy	linder whe	n it i	s floatir	ng in wat	er with	its a	xis
	vert	ical ? The s	pecific g	ravity of cy	linder	is 0.7.				
	(A)	0.1017 m		*	(B)	0.30 m		T T		
	(C)	0.4017 m			(D)	1.4 m				
83.	Pres	ssure variat	ion of air	r above sea	level	is:				
	(A)	linearly in	creasing	with heigh	t		9			
	(B)	exponentia	lly decre	asing with	heigh	ıt				
	(C)	parabolic v	with heig	ht						
	(D)	linearly de	creasing	with heigh	ıt					
AE(C)PWI	DHIMUDA-2	2016—B	28					Þ	
							100			9

(A) 0.611

(B) 0.701

(C) 0.736

(D) 0.761

88. If D is D hours unit hydrograph and T relates the equilibrium discharge approximately at the end of the base period T hours of the unit hydrograph, then the number of unit hydrographs needed to produce the S-curve hydrograph is given by:

(A) T/D

(B) D/T

(C) (T + D)/D

(D) D/(T + D)

89. A 0.3 m diameter pipeline terminates in a nozzle of outlet diameter = 0.15 m. The free jet from the nozzle is deflected through 90° by a flat plate as shown. When water flows through this pipe at a rate of 0.25 m³/second, the force required to hold the plate is most nearly:

(A) 880 N

(B) 1760 N

(C) 2640 N

(D) 3530 N

Euler's equation of motion can be integrated when it is assumed that : 90. Continuity equation is satisfied (A) The fluid is incompressible (B) A velocity potential exists and density is constant (C) The flow is rotational and incompressible (D) 91. A smooth two-dimensional flat plate is exposed to a wind velocity of 70 km per hour. If laminar boundary layer exists upto a value of Rex equal to 3×10^5 and kinematic viscosity of air = 1.49×10^{-5} m²/s, what would be the maximum distance upto which laminar boundary persists? 0.063 m 0.115 m (A) (C) 0.229 m (D) 3.78 m Irrotational flow of fluids refers to: 92. the fluid rotating as it moves along the streamlines of flow being closely packed and curved the fluid flowing along a straight path the net rotation of fluid particles about their mass centers remaining

zero

93.	mas	nsider the control volume form of the basic laws. For the conservations form for a control volume with mass flow into and out of the control, the mass in the control volume is:										
	(A)	of a known magnitude										
	(B)	always the same										
	(C)	dependent on the mass flows in and out										
	(D)	None of the above										
94.	has	sircular sewer of 400 mm diameter and slope 1 in 400 running half- a flow velocity of 0.82 m/second. What velocity of flow will be obta he slope is made 1 in 100 ?										
7	(A)	3.82 m/second (B) 1.64 m/second										
	(C)	0.82 m/second (D) 0.41 m/second										
95.		Match List-I with List-II and select the most appropriate answer using the codes given below the lists :										
		List-II (Process)										
P at	(a)	Hourly peak demand is (1) 180% of average demand										
	(b)	Daily peak demand is (2) 270% of average demand										
Îx	(c)	Monthly peak demand is (3) 100% of average demand										
	(d)	Yearly peak demand is (4) 128% of average demand										
î	Cod	les :										
		(a) (b) (c) (d)										
- X1	(A)	(1) (2) (4) (3)										
	(B)	(4) (3) (2) (1)										
*	(C)	(2) (1) (4) (3)	1									
	(D)	(1) (3) (2) (4)										
AE(C)PWI	DHIMUDA-2016—B 32	4:									

96.	Match List-I with List-II and select the correct answer using the codes given											
	belo	w the	lists :									
		List	·I	4				List-II				
	(a)	Pern	nanent	barra	age		(1)	T = 500 years				
	(b)	Pick-	-up we	ir	+		(2)	T = 200	years	ears		
	(c)	Aque	educt (found	ation)		(3)	T = 100	years			
	(d)	Aque	educt (water	way)		(4)	T = 50 y	ears			
	Cod	es :				. 2						
nel Tel	e e	(a)	(b)	(c)	-(d) `			8			= ⁰ 5 5	
	(A)	(3)	(4)	(2)	(1)					-		
	(B)	(1)	(4)	(3)	(2)					: 1		
	(C)	(3)	(4)	(1)	(2)						041	
	(D)	(1)	(2)	(3)	(4)	1 3			2			
97.	The	unit	in whi	ch bot	h sedir	nentatio	n and	digestion	processe	s of sluc	dge take	
	plac	e sim	ultane	ously	is:	cer ·						
	(A)	Skir	nming	Tank			(B)	Imhoff T	ank			
8.48	(C)	Detr	ritus T	ank	60	-	(D)	Digestion	Tank	*	2 2	
AE(C)PW	DHIM	UDA-2	2016—	-В	33	ē		120 1		P.T.O.	

98. Match List-I (Organisms) with List-II (Process) and select the *correct* answer using the codes given below the lists:

List-I (Organisms)

List-II (Process)

(a) Nitrosomonas

(1) organisms that convert NH₃ to NO₂

(b) Nitrobacter

- (2) microorganisms that are mainly used in an activated sludge process
- (c) Aerobic Heterotrophs
- (3) organisms that convert NO₂ to NO₃

(d) Phototrophs

(4) organisms that use energy from sunlight to synthesize organic compounds for nutrition

Codes :

- (a) (b) (c) (d)
- (A) (1) (2) (4) (3)
- (B) (3) (1) (2) (4)
- (C) (4) (3) (2) (1)
- (D) (1) (3) (2) (4)

Chlorine is sometimes used in sewage treatment: 99. (A) To avoid flocculation To increase biological activated sludge (B) (C) To avoid bulking of activated sludge (D) To help in grease separation The 'sag' in the dissolved oxygen curve results because : 100. (A) it is a function of the rate of addition of oxygen to the stream (B) it is a function of the rate of depletion of oxygen from the stream (C) it is a function of the rate of both addition and depletion of oxygen from the stream the rate of addition of oxygen is linear but the rate of depletion of oxygen is non-linear AE(C)PWDHIMUDA-2016—B P.T.O. 35