HPAS (Main)-2016

CHEMISTRY

Paper I

Time: 3 Hours

Maximum Marks: 100

- Note:— Attempt Five questions in all. Question No. 1 is compulsory. All parts of a question must be answered in continuation at one place.
- (a) What is super acid? Give one example. The reaction of super acid with neopentane, CMe₄ gives an intermediate A which rearranges to product B and CH₄. Identify A and B.
 - (b) The solution of KMnO₄ is deeply coloured while solution of Mn(II) salts are almost colourless. Explain.

7

- (c) Show that the function $f(x, y, z) = \cos ax$, $\cos by$, $\cos cz$ is an eigen function of the Laplacian operator, ∇^2 .
- (a) The plot of ionic radius versus number of f electrons of trivalent lanthanides showed a dip at Gd(III).
 Explain.

P.T.O.

- (b) List the differences between first row transition metals and lanthanides.
- (c) Calculate the electronic partition function of chlorine atom assuming that the energies of first and higher excited states are very large.
- 3. (a) The first line in the rotation spectrum of carbon monoxide has a frequency of 3.8424 cm⁻¹. Calculate the rotational constant and the C-O bond length in carbon monoxide.
 - (b) Calculate the pressure exerted by 2 dm³ mol⁻¹ of ethane at 27°C if it follows van der Waals equation. $a = 5.489 \text{ dm}^6 \text{ atm mol}^{-2}, b = 0.0638 \text{ dm}^3 \text{ mol}^{-1}.$
 - (c) Explain the bonding in Zeise's using Dewar Chatt and Duncanson (DCD) model. An appropriate orbital overlap picture is essential.
- 4. (a) A molecule AB₂ has the following IR and Raman spectra data. Discuss the molecular structure and assign the observed lines to molecular vibrations:

Frequency (cm ⁻¹)	IR	Raman
3,750	Very Strong	
3,650	Strong	Strong, Polarized
1,595	Very Strong	

- (b) The densities of liquid water and water vapour at its normal boiling point are 0.958 and 5.98 × 10⁻⁴ kg dm⁻³ respectively and the change in the entropy of vaporization is 108.99 JK⁻¹mol⁻¹. Calculate the change of pressure for the change in temperature by two degrees.
- (c) [(η³-allyl)Mo(η⁵-C₅H₅)(CO)₂] (A) does not react with nucleophile, Nu. However, complex A upon reaction with NOBF₄ affords products B which upon reaction with Nu affords product C. Identify products A, B and C. What lesson one learns from these reactions?
- 5. (a) Explain the spin state and electronic configuration of Fe(II) in myoglobin and oxygen bound myoglobin.
 - (b) Draw and explain the O₂ binding graph for haemoglobin. Explain cooperativity effect exhibited by haemoglobin which is absent with myoglobin.

7

- (c) What valuable information can be obtained from a knowledge of heats of reactions?
- 6. (a) How many isomers are possible for (i) [Co(en)₂Cl₂]Cl and (ii) [Co(NH₃)₅(NO₂)]Cl₂. Draw their structures.

7

- (b) The effective magnetic moment of $[Ni(NH_3)_6]^{2+}$ is about 3.20 BM. Is it higher or lower or equal to the $\mu_{spin-only}$? Provide an explanation.
- (c) Express the universal gas constant "R" in different units for one mole of an ideal gas.
- (a) Calculate the ionic strength of a solution containing
 0.3 molal NaCl and 0.02 molal Na₂SO₄ and 0.08 molal KCl.
 - (b) Write the spontaneous reaction in the galvanic cell

 -Zn | Zn²⁺ | | Cu²⁺ | Cu⁺

and calculate the standard E.M.F. of the cell and free energy change using the following standard electrode potentials:

 $Zn^{2+} + 2e^- \rightarrow Zn$, $E^{\circ} = -0.763$ V vs NHE $Cu^{2+} + 2e^- \rightarrow Cu$, $E^{\circ} = 0.337$ V vs NHE

(c) Explain the following IR data:

Complex v(CO), cm⁻¹

 $[Mn(CO)_6]^+$ 2090

Cr(CO)₆ 2000

[V(CO)₆] 1860

- 8. (a) Calculate the bond order of CO molecule. 7
 - (b) 50% of a substance decomposes in 5 minutes. How much of it would decompose in 20 minutes, if the reaction is of the second order?
 - (c) The ¹³C NMR spectrum of Fe(CO)₅ revealed one signal for CO carbon while its IR spectrum revealed two bands for CO moiety. Explain 6

 $N = 6.022 \times 10^{23}$ /mol; C = 12 g/mol; O = 15.994 g/mol; R = 0.0821 dm³ atm mol⁻¹K⁻¹